
Math 221

Topics for the third exam

Chapter 3: Second Order Linear Equations

x8: Spring - Mass problems

Basic setup: an object with mass m suspended on a spring. At rest, the mass stretches
the spring by a length L. The mass is then displaced from this equilibrium position and
released (with some initial velocity). Position at time t is u(t) .

Newton: mu00 = sum of the forces acting on the object. These include:

gravity: Fg = mg

the spring: Fs = �k(u+ L) (Hooke's Law)

friction: Ff = �
u0

a possible external force: Fe = f(t)

Equilibrium: gravity and spring forces balance out; mg � kL = 0 (use to compute k !)

So: mu00 = �ku� 
u0 + f(t), i.e.,
mu00 + ku+ 
u0 = f(t)

Some special cases:

No friction (
 = 0) = undamped, no external force (= free vibration); solutions are
u = c1 cos(!0t) + c2 sin(!0t) = C cos(!0t� Æ)

where ! =
p
k=m = the natural frequency of the system, C = amplitude of the vibration,

Æ (= `delay') = phase angle

C =
p
(c21 + c22), tan(Æ) = c2=c1

T = 2�=!0 = period of the vibration. Note: sti�er spring (= larger k) gives higher
frequency, shorter period. Larger m gives the opposite.

Damped free vibrations; solutions depend on 
2 � 4km = discriminant


2 > 4km (overdamped); fundamental solutions are er1t; er2t, r1; r2 < 0


2 = 4km (critically damped); fundamental solutions are ert; tert, r < 0


2 < 4km (underdamped); fundamental solutions are ert cos(!t); ert sin(!t), r < 0 , ! =p
!2
0 � (
=2m)2

In each case, solutions tend to 0 as t goes to 1. In �rst two cases, the solution has at
most on local max or min; in the third case, note that the frequency of the periodic part
of the motion is smaller than the natural frequency. T = 2�=! is called the quasi-period

of the vibration.

x9: Forced vibrations

Focus on periodic forcing term: f(t) = F0 cos(!t) .

Undamped: if ! 6= !0, then (using undetermined coeÆcients) solution is

u = C cos(!0t� Æ) +
F0

m(!2
0 � !2)

cos(!t)

This is the sum of two vibrations with di�erent frequencies.

In the special case u(0) = 0; u0(0) = 0 (starting at rest), we can further simplify:

u =
2F0

m(!2
0 � !2)

sin(
!0 � !

2
t) sin(

!0 + !

2
t)
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When ! is close to !0, this illustrates the concept of beats; we have a high frequency
vibration (the second sine) with amplitude a low frequency vibration (the �rst sine). the
mass essentially vibrates rapidly between to sine curves.

When ! = !0, our forcing term is a solution to the homogeneous equation, so the general
solution, instead, is

u = C cos(!0t� Æ) +
F0

2m!0
t sin(!t)

In this case, as t goes to1, the amplitude of the second oscillation goes to1; the solution,
essentially, resonates with the forcing term. (Basically, you are `feeding' the system at it's
natural frequency.) This illustrates the phenomenon of resonance.

Finally, if we include friction (
 6= 0), then the solution turns out to be
u = homog. soln. +C cos(!t� Æ), where

C =
F0p

m2(!2
0 � !2)2 + 
2!2

, tan(Æ) =

m

m(!2
0 � !2)

But since 
 > 0, the homogeneous solutions will tend to 0 as t ! 1; they are called the
transient solution. (Basically, they just allow us to solve any initial value problem. We
can then conclude that any energy given to the susystem is dissipated over time; leaving
only the energy imparted by the forcing term to drive the system along.) The other term
is called the forced response, or steady-state solution.
Note that the amplitude C of the forced response goes to 0 as the driving frequency, !,
goes to 1. Notice also that tan(Æ) can never be 0, so the forced response is always out
of phase with the forcing term. When we are driving the system at it's natural frequency
!0, the system is 90 degrees out of phase; as ! ! 1, the system approaches being 180
degrees out of phase, i.e., the motion of the mass is almost exactly opposite to the force
being externally applied!

Chapter 7: Systems of �rst order linear equations

x1: Introduction
Basic idea: we have two (or more) quantities, with their rates of change depending upon
one another.
Ex: multiple spring - mass system:

WALL - spring - mass - spring - mass - spring - WALL walls are A units apart
u1 = position of �rst mass, u2 = position of second mass, then we �nd , by analyzing the
forces involved, that
m1u

0

10 = �k1u1 + k2(u2 � u1)� 
1u
0

1 hskip.2in m2u
0

20 = �k2(u2 � u1) + k3(A� u2)� 
2u
0

2

where the symbols have similar meanings to our ordinary situation. The appropriate notion
of an initial value problem would be to know the initial positions and initial velocities of
both masses at a �xed time.

Ex: mixing with multiple tanks:
Tank 1 
ows to tank 2 with rate r1, 2 to 3 with rate r2, and 3 to 1 with rate r3, then if the
u's are the amount of solute in each tank, and the V 's are the volumes in each, we have

u01 =
r3
V3

u3 �
r1
V1

u1; u
0

2 =
r1
V1

u1 �
r2
V2

u2; u
0

3 =
r2
V2

u2 �
r3
V3

u3

Here the appropriate notion of initial value problem is to know the values of each of
u1; u2; u3 at a �xed time.
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An important class of examples: any ordinary di�erential equation
y(n) = f(t; y; y0; : : : ; y(n�1))

can be turned into a system of �rst order equations by setting
u1 = y; u2 = y0; : : : ; un�1 = y(n�1)

giving the system of equations
u01 = u2; u

0

2 = u3; : : : ; u
0

n�1 = f(t; y; y0; : : : ; y(n�1))

x2: Matrices

The best way to develop techniques for solving systems of equations is with matrices.
Notationally, a system of equations

u01 = 2u1 + 3u2 u02 = 3u1 � u2
can be expressed as�
u01
u02

�
=

�
2 3
3 �1

��
u1
u2

�
, or, writing u =

�
u1
u2

�
and using the derivative of a vector-

valued function, u0 =

�
2 3
3 �1

�
u = Au . The square of numbers is called a (coeÆcient)

matrix. We actually want to think of Au as a real multiplication; the basic idea is that
the i-th entry of Au is the i-th row of A times u . This in turn should be familiar as the
dot product of the row of A and u.
More generally, we can multiply matrices, getting another matrix. Using the notation
A = (aij), where aij is the entry in the i-th row and j-th column of A, we write

AB = (cij), where cij = the dot product of the i-th row of A and the j-th column of B .

Amazingly, this product has alot of the properties we are used to: if we add matrices by
adding their ij-th entries (to get the ij-th entry of the sum), and multiply by a scalar c
by multliplying each entry by c, then we have:

(AB)C = A(BC) , A(B + C) = AB +AC , A(cB) = c(AB) , c(A+B) = cA+ cB
However what we do not NOT NOT have is AB = BA; usually, matrix multiplication
does not NOT NOT commute! We will need the special matrix I = (Æij), where Æij = 1
if i = j, and 0 if i 6= j . This matrix has the property that IA = AI = A for all matrices
A, i.e., it acts like the number 1 under multiplication.

If A is a matrix whose entries are functions (aij(t) = A(t), then we can make sense of its
derivative; A0(t) = (a0ij(t)) . Then we have the properties:

(A+B)0(t) = A0(t) + B0(t) , (AB)0(t) = A0(t)B(t) + A(t)B0(t)
Note the order of multiplication in the second formula; it's important!

x3: Eigenvectors and eigenvalues

We shall see that our approach to solving u0 = Au, is, like in Chapter 1, to �nd solutions
of the form u = ekt~v0 for a (non-zero) vector ~v0 and number k. These vectors and numbers
will be determined by A; they will come from solving

A~v0 = k~v0
Such vectors are called eigenvectors, and their associated numbers k are called eigenvalues.
Our approach to �nding such vectors and numbers is to write the equation as

(A� kI)~v0 = ~0 (*)
First we �nd the right values k. Linear algebra teaches us that (*) has a (non-zero vector)
solution exactly when det(A� kI) = 0, where "det" stands for the determinant. We have
already run into this concept; for a 2-by-2 matrix
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A =

�
a b
c d

�
, det(A) = ad� bc

There are similar formulas for n � n matrices for any n, but we will focus on n = 2 to
make our calculations simpler. If we compute det(A� kI), we �nd that (*) has a solution
exactly when

det(A� kI) = k2 � (a+ d)k + (ad� bc) = 0
This is a quadratic polynomial, so it (usually) has two roots, r1; r2 . Once we have the

roots, we go back and solve (A� riI)~v =~(0), i.e,
ax1 + bx2 = rix1 , cx1 + dx2 = rix2

It turns out that the second equation is always redundant (although this is really only true
of 2� 2 systems), and we can �nd ~v by choosing any convenient (non-zero) value for x1 or
x2, and solving for the other.

x5: Homogeneous linear systems with constant coeÆcients

Now we put all of this technology to work, to solve our system of di�erential equations
u0 = Au (**)

where A is a matrix whose entries are all constants. Our basic procedure will be to guess

that the solution is u = ekt~v0 for some vector (with constant entries) ~v0. If we plug such
a function into (**), we �nd that

u0 = ku = ekt(k~v0), while Au = ekt(A~v0)
and so we �nd that we need A~v0 = k~v0 . In other words, we need the eigenvalues for A, and
their corresponding eigenvectors. This gives us two solutions to the system of equations,
but using the Principle of Superposition:

If u1, u2 are solutions to the linear system of equations u0 = Au, then the functions
c1u1 + c2u2 are also solutions, for any constants c1; c2 .

(which we can easily verify), we can take linear combinations of our solutions, to get the
general solution to the system of equations

u = c1e
r1t ~v1 + c2e

r2t ~v2
where ~v1; ~v2 are eigenvectors for the coeÆcient matrix A, with eigenvalues r1; r2.

To solve an initial value problem, we �nd the general solution, and then plug t0 into the
solution and set the vector equal to our initial values (u1(t0); u2(t0)) . This gives us a pair
of linear equations to solve, which we do using our earlier techniques.

Each solution is a pair of functions u = (u1(t); u2(t)), which, if we think of them as giving
x- and y-coordinates, describe a path in the plane. u0 can then be interpreted as the velocity
vectors of this path, which are vectors tangent to the path. since we have a solution to our
di�erential equation (**), u0 is actually Au, which we can imagine computing for every

point in the plane. Plotting each of these vectors A~v with its tail at ~v gives us a vector �eld
in the plane, which we call the direction �eld of the system of equations. The solutions to
(**) are the paths whose velocity vectors are equal to this direction �eld (and in particular
is tanget to the vector �eld). A picture of the direction �eld, together with a representative
collection of solution curves, is called a phase portrait for the system of equations.

Our fundamental solutions ui = erit~vi give very special solution curves; the y-coordinate
is a (constant) multiple of the x-coordinate, so it parametrizes a straight line out from
the origin. With two eigenvalues, we have two straight line solutions to the system of
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equations. Every other solution will be curved (*actually, this isn't quite true; things are
much di�erent if one of the eigenvalues is 0; then every solution is a straight line (check it
out!)*). We can understand the other solutions in terms of their behavior as t ! 1 and
t! �1.

We have two lines L1 and L2 coming from the eigenvalues r1 and r2. If r1 > r2, then as
t!1, er1t=er2t = e(r1�r2)t !1 and so in any solution

c1e
r1t ~v1 + c2e

r2t ~v2, the c1e
r1t ~v1 term will `dominate'

i.e., the solution will turn parallel to ~v1. A similar argument shows that as t ! �1, the
solutions will turn parallel to ~v2.

The shape of the solutions also depend on the signs of the eigenvalues. If they are both
negative, every solution tends toward the origin as t ! 1, and head to 1 in the other
direction. If one is positive and one negative, then the solutions (other than the straight
line ones) tend to 1 in both directions. If both are positive, then every solution tends to
1 as t!1, and heads to the origin in the other direction.

All of this analysis has the assumption that the eigenvalues for our matrix A are distinct

real numbers. We have yet to deal with the other two possibilities: the eigenvalues are
complex (conjugates), or are equal.

x5: Complex eigenvalues

To deal with complex eigenvalues �� �i , for example

A =

�
1 �4
3 �3

�
, which has eigenvalues 1� 3i

we do what we did for second order equation. We just assume that the solution is
u = e(�+�i)t~v0 = e�t(cos(�t) + i sin(�t))(~v

To �nd ~v, we solve A~v = (�+ �i)~v as before, except that in this case the coordinates of ~v
will be complex numbers. (As before, the second equation is redundant.) If we write

~v =

�
v1
v2

�
, so u =

�
(cos(�t) + i sin(�t))~v1
(cos(�t) + i sin(�t))~v2

�

we can write this as
u = x+ iy , where x and y have real entries

Then we use the useful fact: if u = x + iy solves the equation u0 = Au , where A
has real entries, then x and y also solve the system of equations. (This uses the fact
that eigenvalues come in complex conjugate pairs!) These two vector functions are our
fundamental solutions. Each coordinate of these functions is a linear combination of the
functions e�t cos(�t) and e�t sin(�t), and so the phase portrait of such a system of equations
invloves both a circular motion and and expension from or contraction towards the origin
(depending on whether � is positive or negative). The solution curves are spirals around
the origin.

x5: Repeated eigenvalues

If the coeÆcient matrix has only one eigenvalue r, occuring twice, then using that eigen-
value we can �nd an eigenvector ~v and a solition u = ert~v. But only if A = rI (in the 2�2
case, will we be able to �nd two independent solutions; in that case we can actually take

u = c1r
rt

�
1
0

�
+ c2e

rt

�
0
1

�
=

�
c1e

rt

c2e
rt

�
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In every other case, we guess that the other solution is u = tert ~w . It turns out, however,
that this won't work: what we instead need to do is to guess

u = tert~v+ert ~w , where v is the same eigenvector with eigenvalue r that we already found!

Carrying this expression through the equation u0 = Au , we �nd that ~w must satisfy
(A� rI)~w = ~v

Since we know r and ~v , we can solve this for ~w . (In general, linear algebra tells us we
shouldn't always expect to be able to solve such an equation, but because of the repeated
root, it turns out than in fact we can.) This gives us our second fundamental solution.

If we look at the phase portrait for such an equation, we �nd that for the solution
u = c1e

rt~v + c2(te
rt~v + ert ~w) = ert[(c1 + c2t)~v + c2 ~w]

as t!1 the solution curves (with c2 > 0) run parallel to ~v, while as t! �1, they run
parallel to �~v , that is, the term t~v will dominate. If c2 < 0, the roles of �~v are reversed.
Notice that c2 = 0 gives the straight line solution(s) u = �ert~v. The solutions will tend
to the origin as t goes to 1 or �1 , depending on the sign of r.
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