Math 310 Some practice problems for Exam 2

1. Suppose $f: \mathbb{Z} \to \mathbb{Z}_6$ is the function $f(x)=|x|_6$.

1.a. Show that ^f is a homomorphism.

1.b. Show that f is surjective.

1.c. Show that ^f is not injective.

2. Show that the rings \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are not isomorphic.

3. Let $D : \mathbb{K}[x] \to \mathbb{K}[x]$ be the derivative map given by $D(a_0 + a_1x + a_2x^2 + b_1x)$ $\cdots a_n x^{\alpha} = a_1 + 2a_2x + \cdots + na_n x^{\alpha-1}$. Show that D is not a homomorphism. (film): Compute $D(x)$.

4. Suppose that R and S are rings, R_{0} is a subring of R , and S_{0} is a subring of S . Show that $R' \times S'$ is a subring of $R \times S$.

5. Show that $\mathbb{Z}_6 \times \mathbb{Z}_5 \cong \mathbb{Z}_{10} \times \mathbb{Z}_3$.

6. Let R be a ring with identity. An element $e \in R$ is called *idempotent* if $e^2 = e$. The elements 0 and 1 are called the *trivial* idempotents of R. All other idempotents (if any exist) are called nontrivial idempotents

Let R, S be rings with identity with $R \neq 0$, $S \neq 0$ (that is, neither R nor S is the "stupid" ring). Show that $R \times S$ always has nontrivial idempotents.

7. Find the solutions to the system of congruences

 $x \equiv 3 \pmod{5}$ $x \equiv 1 \pmod{6}$ $x \equiv 2 \pmod{11}$

8. Let $f: \mathbb{Z}_8 \to \mathbb{Z}_{12}$ be given by $f(|x|_8) = |3x|_{12}$.

- (a): Show that f is a **well-defined** homomorphism of **groups** (under addition).
- (b): Show (by example) that fis neither injective nor surjective.
- (c): Is fa homomorphism of rings? Show why or why not.

9. Let G be an abelian group, with identity element e.

(a): Show that if $a, b \in G$, and $a^n = e$, $b^m = e$ for some $n, m \in \mathbb{N}$, then $(ab)^{nm} = e.$

(b): Show that $H = \{a \in G : a^k = e \text{ for some } k \geq 1\}$ is a **subgroup** of G.

10. Show that if G is a group, and H, $K \subseteq G$ are subgroups of G, then $H \cap K =$ ${g \in G : g \in H \text{ and } g \in K}$ is also a subgroup of G.