

Math 310 Homework 4

Due Tuesday, October 2

18. (Childs, p.67, E2 (sort of)) Show that if a is an *odd* integer and $ab \equiv ac \pmod{8}$, then $b \equiv c \pmod{8}$.

What are some other numbers besides 8 for which this will work?

19. Show by induction (on n) that if the integers a_1, \dots, a_n are all congruent to 1 modulo m , then their product $a_1 \cdots \cdots a_n \equiv 1 \pmod{m}$.

20. (Childs, p.67, E4) Show that if $a \equiv b \pmod{m}$ and n is any natural number, then $a^n \equiv b^n \pmod{m}$.

21. (Childs, p67, E6) Find the remainder of each of the numbers a when you divide by the corresponding number b :

(1): $a = 5^{18}$, $b = 7$

(2): $a = 68^{105}$, $b = 13$

(3): $a = 6^{47}$, $b = 12$

(Hint: Problem 20, suitably applied, will help!)

22. Show that if a and b are integers with $a \equiv b \pmod{p}$ for *every* prime p , then $a = b$.

(Hint: How big is $|b - a|$?)

For Math 310H, or extra credit:

H3. Show that every integer of the form $n = 4m + 3$ has a prime factor of the form $4k + 3$. (Translation: every number that leaves remainder 3 upon division by 4 has a prime factor that leaves remainder 3 upon division by 4.) Use this to show that there are infinitely many prime numbers of the form $4m + 3$.

Hint (for both parts!): What is the alternative? Mimic our proof of the infinitude (what a wonderful word....) of primes, for the second part....