

Math 310 Homework 7

Due Tuesday, November 6

33. (Childs, p123, E12) Let R be a ring with identity. Show that

- $(-1) \cdot (-1) = 1$
- $-(-a) = a$
- for every $a, b \in R$, $(-a) \cdot b = -(a \cdot b)$

34. (Childs, p.123, E13) Which of the axioms for a ring, integral domain, or field **fail** for the following sets?

- the natural numbers \mathbb{N}
- the non-negative real numbers \mathbb{R}_+

35. (a converse to part of Problem 29) Suppose R is a ring, and a and b are elements of R , with $a \neq 0_R$. Show that if the equation

$$ax = b$$

has more than one solution, then a is a zero divisor!

36. (Childs, p.126, E7) Let R be the set of elements of the form $a+bi$, where $a, b \in \mathbb{Z}_3$ and i is a symbol satisfying $i^2 = -1$. If we add and multiply these objects, just like we do in the complex numbers \mathbb{C} , we get a commutative ring, which we will call \mathbb{F}_9 . (You do **not** need to show this!) This ring has 9 elements.

- Write down these 9 elements.
- Show that every element of \mathbb{F}_9 has a multiplicative inverse, so that \mathbb{F}_9 is a field.

37. Show that if $f : R \rightarrow S$ is a homomorphism, then

$$f(R) = \{s \in S : s = f(r) \text{ for some } r \in R\}$$

is a subring of S .