Math 310

Handy facts for the first exam

Induction. Three different equivalent versions:

- 1. (Well-orderedness) Every non-empty set of natural numbers has a smallest element.
- 2. (Induction) If P(n) is a statement about the integer n and
 - (a) $P(n_0)$ is true for some integer n_0 , and
 - (b) if P(n-1) is true, then P(n) is true,

then P(n) is true for every integer $n \ge n_0$

- 3. (Complete Induction) If P(n) is a statement about the integer n and
 - (a) $P(n_0)$ is true for some integer n_0 , and
 - (b) if P(k) is true for every $n_0 \le k < n$, then P(n) is true,
 - then P(n) is true for every integer $n \ge n_0$

An integer p is prime if whenever p = ab with $a, b \in \mathbb{Z}$, either $a = \pm n$ or $b = \pm n$.

[For sanity's sake, we will take the position that primes should <u>also</u> be ≥ 2 .]

There are infinitely many distinct primes.

Every integer $n \ge 2$ can be expressed as a product of primes; $n = p_1 \cdot \dots \cdot p_k$.

- If we insist that the primes are written in increasing order, $p_1 \leq \ldots \leq p_k$, then this representation is *unique*.
- Exponential notation: any $n \ge 2$ can be uniquely expressed as $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ with $\alpha_i \ge 1$ for each i and $p_1 < \ldots < p_r$.
- The Division Algorithm: For any integers $n \ge 0$ and m > 0, there are *unique* integers q and r with n = mq + r and $0 \le r \le m 1$.
- [Note: this is also true for any integers n, m with $m \neq 0$, although you need to replace "m 1" with "|m 1|".]
- The basic idea: keep repeatedly subtracting m from n until what's left is less than m.
- Notation: b|a = b divides $a^{n} = b$ is a divisor of $a^{n} = a$ is a multiple of b^{n} , means a = bk for some integer k.

If b|a and $a \neq 0$, then $|b| \leq |a|$.

- If a|b and b|c, then a|c
- If a|c and b|d, then ab|cd
- If p is prime and p|ab, then either p|a or p|b

Notation: (a, b) = gcd(a, b) = greatest common divisor of a and b

Different, equivalent, formulations for d = (a, b):

- (1) d|a and d|b, and if c|a and c|b, then $c \leq d$.
- (2) d is the smallest *positive* number that can be written as d = ax + by with $a, b \in \mathbb{Z}$.
- (3) d|a and d|b, and if c|a and c|b, then c|d.
- (4) d is the only divisor of a and b that can be expressed as d = ax + by with $a, b \in \mathbb{Z}$.

If c|a and c|b, then c|(a,b)

- If c|ab and (c, a) = 1, then c|b
- If a|c and b|c, and (a, b) = 1, then ab|c
- If a = bq + r, then (a, b) = (b, r)

Euclidean Algorithm: This last fact gives us a way to compute (a,b), using the division algorithm: Starting with a > b, compute $a = bq_1 + r_1$, so $(a, b) = (b, r_1)$. Then compute $b = r_1q_2 + r_2$, and repeat: $r_{i-1} = r_iq_{i+1} + r_{i+1}$. Continue until $r_{n+1} = 0$, then $(a, b) = (b, r_1) = (r_1, r_2) = \ldots = (r_n, r_{n+1}) = (r_n, 0) = r_n$.

Since $b > r_1 > r_2 > r_3 > \dots$, this process must end, by well-ordered rness.

We can reverse these calculations to recover (a, b) = ax + by, by rewriting each equation in our algorithm as $r_{i+1} = r_{i-1} - r_i q_{i+1}$, and then repeatedly substituting the higher equations into the lowest one, in turn, working up through the list of equations.

Primality Testing:

- If $n \ge 2$ is not prime, then it has a prime factor $p \le \sqrt{n}$. So to test if a number n is prime, 'just' check to see if p|n for any prime $p \le \sqrt{n}$.
- The Sieve of Eratosthenes: To find all primes between 2 and n, first make a list, then repeat the following procedure: circle the smallest number p not already either circled or crossed off, then cross off all other multiples of p. Continue until the number you are about to circle is larger than \sqrt{n} . Then every number either circled or *not crossed off* is prime, while every number crossed off is *not* prime.

Congruence modulo n : Notation: $a \equiv b \pmod{n}$ (also written $a \equiv b$) means $n \mid (b - a)$

Equivalently: the division algorithm will give the same remainder for a and b when you divide by n

Congruence mod n is an *equivalence relation*, which means

(Reflexive) $a \underset{n}{\equiv} a$ for every $a \in \mathbb{Z}$ (Symmetric) If $a \underset{n}{\equiv} b$, then $b \underset{n}{\equiv} a$ (Transitive) If $a \underset{n}{\equiv} b$ and $b \underset{n}{\equiv} c$, then $a \underset{n}{\equiv} c$ If a = b, then $a \underset{n}{\equiv} b$ for any $n \in \mathbb{Z}$ If $a \underset{n}{\equiv} b$ and $k \in \mathbb{Z}$, then $ka \underset{n}{\equiv} kb$ If $a \underset{n}{\equiv} b$ and m | n, then $a \underset{m}{\equiv} b$ (*) If $a \underset{n}{\equiv} b$ and $c \underset{n}{\equiv} d$, then $a + c \underset{n}{\equiv} b + d$ and $ac \underset{n}{\equiv} bd$

The congruence class of a mod n is the collection of all integers congruent mod n to a: $[a]_n = \{b \in \mathbb{Z} : a \equiv b\} = \{b \in \mathbb{Z} : n | (b-a)\}$

Because $\equiv is$ an equivalnce relation, these sets are either *disjoint* or *equal*. And because every integer is congruent mod n to its remainder on division by n, there are exactly n congruence classes mod n, which can be represented as $[0]_n, [1]_n, \ldots, [n-1]_n$. The set of these n equivalence classes is denoted $\mathbb{Z}/n\mathbb{Z}$ or \mathbb{Z}_n , and is called the *integers mod* n

(*) tells us that it *makes sense* to add and multiply congruence classes:

$$[a]_n + [b]_n = [a+b]_n$$
, $[a]_n \cdot [b]_n = [ab]_n$

These facts can be used to carry out some otherwise fairly difficult calculations very quickly:

To compute $[a^m]_n$, we note that $[a^m]_n = [a]_n^m$, so we first write a = nq + r, so $[a^m]_n = [a]_n^m = [r]_n^m$. Then we look at the list $[r]_n^1, [r]_n^2, [r]_n^3, [r]_n^4, \ldots$, and continue until the power equals $[0]_n, [1]_n$ or it repeates itself. All of these can be used to reduce m. For example,

 $[107^{1015}]_7$: $[107]_7 = [7 \cdot 15 + 2]_7 = [2]_7$, and $[2]_7^3 = [8]_7 = [1]_7$, so since $1015 = 3 \cdot 338 + 1$, we have $[107^{1015}]_7 = [2]_7^{1015} = [2]_7^{3 \cdot 338 + 1} = ([2]_7^3)^{338} \cdot [2]_7^1 = [1]_7^{338} \cdot [2]_7 = [2]_7$.

- We can show that some equations have no integer solutions by showing that the 'same' equations have no solutions in some \mathbb{Z}_n (coefficients need to be interpreted as being in \mathbb{Z}_n ...). The latter is far less difficult to do, in general, because \mathbb{Z}_n has only *n* elements! For example,
- In \mathbb{Z}_5 , $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 = 4$, and $4^2 = 1$, and so $x^2 = [3]_5$ has no solution in \mathbb{Z}_5 . So the equation

$$x^2 - 5y^2 = 531253$$

has no solution with $x, y \in \mathbb{Z}$, since if it did, then $[x^2 - 5y^2]_5 = [x]_5^2 - [5]_5 \cdot [y]_5^3 = [x]_5^2 - [0]_5 \cdot [y^3]_5 = [x]_5^2 = [531253]_5 = [3]_5$ so $[x]_5^2 = [3]_5$, which we know is impossible!