Math 310
Handy facts for the second exam

Don’t forget the handy facts from the first exam!

Fermat’s Little Theorem. If p is prime and (a,p) = 1, then a?~! =1

v
Because: (a-1)(a-2)(a-3)---(a-(p—1)) =1-2-3---(p—1),and (1-2-3---(p—1),p) =1.
2
Same idea, looking at the a’s between 1 and n — 1 that are relatively prime to n (and letting
#(n) be the number of them), gives
If (a,n) = 1, then a®™ =1 .

#(n) = n — 1 only when n is prime. Numbers n which are not prime but for which a®~! =1 are
n

called a-pseudoprimes; they are very uncommon!

One approach to calculating a* (mod n) quickly is to start with a, and repeatedly square the

result (mod n), computing a', a?,a*,a®,a'. etc. , continuing until the resulting exponent is

more than half of k . a¥ is then the product of some subset of our list - we essentially use the
powers whose exponents are part of the base 2 expansion of k.
Rings. Basic idea: find out what makes our calculations in Z,, work.
A ring is a set R together with two operations +,- (which we call addition and multiplication)
satisfying:
For any r,s,t € R,
(0 )r+s r-s € R  [closure]
() (r+s)+t=r+(s+1t) [associativity of addition]
(2)r+s=s+r [commutativity of addition]
(3) thereis a Op € R with r+0p =r  [additive identity]
(4) thereis a —r € R with r + (—r) =0r  [additive inverse]
(5) (r-s)-t=r-(s-t) [associativity of multiplication]
(6) thereisa lp € Rwithr-1p =1gr-r=7r  [mutliplicative identity]
(yr-(s+t)=r-s+r-tand (r+s)-t=r-t+s-t [distributivity]
These are the most basic properties of the integers mod n that we used repeatedly. Some others
acquire special names:
A ring (R, +, ) satisfying: forevery r,s € R,r-s=s-r is called commutative.
A commutative ring R satisfying if rs = 0g, then r = 0g or s = Og is called an integral
domain.
A ring R satisfying if r # 0g, then r-s = s-r = 1 for some s € R is called a
division ring.
A commutative division ring is called a field.
An element r € R satisfying r # Og and r - s = O for some b # Op is called a zero divisor.
An element r € R satisfying rs = sr = 1 for some s € R is called a unit.
An idempotent is an element r € R satifying r? =r .
A nilpotent is an element r € R satisfying ¥ = O for some k > 1 .

Examples: The integers Z, the integers mod n Z,, the real numbers R, the complex numbers C;

If R is a ring, then the set of all polynomials with coefficients in R, denoted R[z], is a ring, where
you add and multiply as you do with “ordinary” polynomials:
n

R[z] = {Z rext o € R} and (filling in with Og’s as needed)
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If R is a ring and n € N, then the set M, (R) of n x n matrices with entries in R is a ring, with
entry-wise addition and ‘matrix’ multiplication:
n

the (’i,j)-th entry of (Tz'j) . (Sij) 18 Z’)”ik * Skj
k=0
If R is commutative, then so is R[z] ; if R is an integral domain, then so is R[z]. If n > 2, then
M,,(R) is not commutative.

A subring is a subset S C R which, using the same addition and multiplication as in R, is also a
ring.
To show that S is a subring of R, we need:
(1)if s,s" € S, then s+ s',s-s" € S
(2)if s€ S, then —s € S
(3) there is something that acts like a 1 in S (this need not be 1z ! But 1z € S is enough...)
The Cartesian product of two rings R,S is the set R x S = {(r,s) : r € R,s € S} . It is
a ring, using coordinatewise addition and multiplication: (r,s) + (r',s') = (r +1',s + §') ,
(rys)-(r',s"y=(r-r',s-5)
Some basic facts:

A ring has only one “zero”: if x + r = r for some R, then x = 0p

A ring has only one “one”: if zr = r for every r, then z = 1p

Every r € R has only one additive inverse: if » + x = Og, then z = —r

—(=r)=r 3 Op-r=r-0p=0r ; (=1lg)-r=r-(-1g)=-r

Every finite integral domain is a field; this is because, for any a # Og, the function m, : R - R
given by m,(r) = ar is one-to-one, and so by the Pigeonhole Principle is also onto; meaning
ar = 1 for somer € R .

If R is finite, then every r € R, r # Op, is either a zero-divisor or a unit (and can’t be both!).
Idea: The first time the sequence 1,7, 72,73, ... repeats, we either have r® = 1 = r(r"~!) or
=gtk g0 p(prtEol _pn-ly =,

A unit in R x S consists of a pair (r,s) where each of r,s is a unit. (The same is true for
idempotents and nilpotents.)

For n € Nand r € R, we definen -z =z + ...+ (add z to itself n times) and 2" =2 ---- -z
(multiply z by itself n times). And we define (—n) -z = (—z) +--- + (—z) . Then we have
(m+m)-r=n-r+m-r,(nm)-r=mn-(m-r), rmtn =pm. pn pmn — (pm)n

Homomorphisms and isomorphisms
A homomorphism is a function ¢ : R — S from a ring R to a ring S satisfying:
for any r,r' € R, po(r+71'") = p(r) + o(r') and p(r- ') = p(r) - o(r') .
The basic idea is that it is a function that “behaves well” with respect to addition and multipli-
cation.

An isomorphism is a homomorphism that is both one-to-one and onto. If there is an isomorphism
from R to S, we say that R and S are isomorphic, and write R =2 S . The basic idea is that
isomorphic rings are “really the same”; if we think of the function ¢ as a way of identifying
the elements of R with the elements of S, then the two notions of addition and multiplication
on the two rings are identical. For example, the ring of complex numbers C is isomorphic to
a ring whose elements are the Cartesian product R x R, provided we use the multiplication
(a,¢)-(c,d) = (ac—bd,ad + bec) . And the main point is that anything that is true of R (which
depends only on its properties as a ring) is also true of anything isomorphic to R, e.g., if r € R
is a unit, and ¢ is an isomorphism, then ¢(r) is also a unit.

The phrase “is ismorphic to” is an equivalence relation: the composition of two isomorphisms is
an isomorphism, and the inverse of an isomorphism is an isomorphism.

A more useful example: if (m,n) =1, then Z,,,, 2 Zy, X Z,, . The isomorphism is given by
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The main ingredients in the proof:

Ifo:R—Sand¢:R— T are ring homomorphisms, then the function w : R — S x T given by
w(r) = (¢(r),(r)) is also a homomorphism.

If m|n, then the function ¢ : Z,, — Z,, given by ¢([z],) = [z]s, is a homomorphism.

Together, these give that the function we want above is a homomorphism. The fact that (m,n) =1
implies that ¢ is one-to-one; then the Pigeonhole Principle implies that it is also onto!

The above isomorphism and induction imply that if ny,...nx are pairwise relatively prime (i.e.,
if i # j then (n;,n;) = 1), then

Lipyeomyy = Loy, X -+ X Ly, . This implies:

The Chinese Remainder Theorem: If ny,...n; are pairwise relatively prime, then for any
a1,...ar € N the system of equations

z=a; (modn;),i=1,...k

has a solution, and any two solutions are congruent modulo ny ---nyg .

A solution can be found by (inductively) replacing a pair of equations z = a (mod n) , z = b
(mod m), with a single equation z = ¢ (mod nm), by solving the equation a +nk = x = b+mj
for k and 7, using the Euclidean Algorithm.

Application to units and the Euler ¢-function:

If R is a ring, we denote the units in R by R* . E.g., Z! = {[z], ; (z,n) = 1}. From a fact above,
we have (R x S)* = R* x §* .

¢(n) = the number of units in Z,, = |Z}|; then the CRT implies that if (m,n) = 1, then ¢(mn) =
¢(m)é(m) . Induction and the fact that if p is prime ¢(p¥) = p*~1(p — 1) = p*—(the number
of multiples of p) implies

If the prime factorization of n is p{* -+~ p&*, then ¢(n) = [p{" "' (p1 — 1)]--- [pgk_l(pk —1)]

Groups: Three important properties of the set R* of units of a ring R:
1g € R*
if z,y € R*, then zy € R*
if z € R* then (z, by definition, has a multiplicative inverse z=! and) ! € R*

Together, these three properties (together with associativity of multiplication) describe what is
called a group.

A group is a set G together with a single operation (denoted x) satisfying:

For any g, h,k € G,
(0) gxh e G  [closure]
(1) gx(h+k)=(gxh)*xk  [associativity]
(2) there is a 1g € G satisfying lgxg=g*1lg =g [identity]

! 1=1¢ [inverses]

(3) there is a g~ € G satisfying g1 xg=g* g~
A group (G.x) which, in addition, satisfies g* h = h=xg for every g,h € G is called
abelian. Since this is something we always expect out of addition, if we know that a group is
abelian, we often write the group operation as “+” to help remind ourselves that the operation

commutes.

Examples: Any ring (R,+, "), if we just forget about the multiplication, is an (abelian) group
(R, +) -

For any ring R, the set of units (R*,-) is a group using the multiplication from the ring. [[Unsolved
(I think!) question: is every group the group of units for some ring R?]]

Function composition is always associative, so one way to build many groups is to think of the
elements as functions. But to have an inverse under function composition, a function needs to
be both one-to-one and onto. [One-to-one is sometimes also called injective, and onto is called
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surjective; a function that is both injective and surjective is called bijective.] So if, for any set
S, we set

G=P(S)={f:5—S: fisone-to-one and onto} ,

then G is a group under function composition; it is called the group of permutations of S. If S is
the finite set {1,2,... ,n}, then we denote the group by S, the symmetric group on n letters.
By counting the number of bijections from a set with n elements to itself, we find that S,, has
n! elements.

The set of rigid motions of the plane, that is, the functions f : R? — R? satisfying dist(f(z), f(y))
= dist(z,y) for every z,y € R?, is a group under function composition, since the composition
or inverse of rigid motions are rigid motions. More generally, for any geometric object T' (like
a triangle, or square, or regular pentagon, or...), the set of rigid motions f which take T to
itself form a group, the group Symm(7T") of symmetries of T. For example, for T = a square,
Symm(T') consists of the identity, three rotations about the center of the square (with rotation
angles 7/2,7,, and 37 /2), and four reflections (through two lines which go through opposite
corners of the square, and two lines which go through the centers of opposite sides).

G = Aff(R) = {f(z) = ax +b: a # 0} , the set of linear, non-constant functions from R to
R, form a group under function composition, since the composition of two linear functions is
linear, and the inverse of a linear function is linear. It is called the affine group of R. This is
an example of a subgroup of P(R):

A subgroup H of G is a subset H C GG which, using the same group operation as G, is a group in
its own right. As with subrings, this basically means that:
(1) If h,k € H, then hxk € H
(2) Ifh€ H, then h=t € H
(3) 1€ H.
Condition (3) really need not be checked (so long as H # (), since, for any h € H, (2) guarantees
that h~! € H, and so (1) implies that hx h=' =15 € H .

For example, for the symmetries of a polygon T' in the plane, since a symmetry must take the
corners of T' (called its vertices) to the corners, each symmetry can be thought of as a permuta-
tion of the vertices. So Symm(7) can be thought of (this can be made precise, using the notion
of isomorphism below) as a subgroup of the group of symmetries of the set of vertices of T'.

As with rings, some basic facts about groups are true:

There is only one “one” in a group; if x € G satisfies z * y = y for some y € G, then z = 1

Every g € G has only one inverse: if g+ h = 1g, then h = g~}

(971"t =g forevery g € G

(gh)~t =h71g7"

Homomorphisms and isomorphisms: Just as with rings, again, we have the notion of func-
tions between groups which “respect” the group operations:

A homomorphism is a function ¢ : G — H from groups G to H which satisfies:

for every g1,92 € G, (g1 % g2) = ¥(91) * ©(g2)
No other condition is required, since this implies that
p(lg) =1a  aswellas  o(g7") = (p(9))~" .

An isomorphism is a homomorphism that is also one-to-one and onto. If there is an isomorphism
from G to H, we say that G and H are isomorphic. As with rings, the idea is that ismorphic
groups are really the “same”; the function is a way of identifying elements so that the two
groups are identical (as groups!). For example, the group Aff(R) can be thought of as R x R
(i.e., the pair of coefficients of the linear function), but with the group multiplication given by
(by working out what the coeffiicients of the composition are!) (a,b) * (c,d) = (ac,ad +b) .



