Math 310 Handy facts for the second exam

produced a pr

Don't forget the handy facts from the first exam!

Fermat's Little Theorem. If p is prime and $(a, p) = 1$, then $a^{p-1} \equiv 1$

Because: $(a \cdot 1)(a \cdot 2)(a \cdot 3) \cdots (a \cdot (p-1)) = 1 \cdot 2 \cdot 3 \cdots (p-1)$, and $(1 \cdot 2 \cdot 3 \cdots (p-1), p) = 1$. produced a pr

Same idea, looking at the a's between 1 and $n-1$ that are relatively prime to n (and letting $\phi(n)$ be the number of them), gives

If $(a, n) = 1$, then $a^{(n)} \equiv 1$.

 $\phi(n) = n - 1$ only when n is prime. Numbers n which are not prime but for which $a^{n-1} \equiv 1$ are called *a-pseudoprimes*; they are very uncommon!

One approach to calculating a^+ (mod n) quickly is to start with a , and repeatedly square the result (mod n), computing a^-, a^-, a^-, a^{--} . etc. , continuing until the resulting exponent is more than half of κ . a^+ is then the product of some subset of our list - we essentially use the powers whose exponents are part of the base 2 expansion of k.

Rings. Basic idea: find out what makes our calculations in \mathbb{Z}_n work.

A ring is a set R together with two operations $+$, (which we call addition and multiplication) satisfying:

For any $r, s, t \in R$,

(0) $r + s, r \cdot s \in R$ [closure] (1) $(r + s) + t = r + (s + t)$ [associativity of addition]

(2) $r + s = s + r$ [commutativity of addition]

(3) there is a $0_R \in R$ with $r + 0_R = r$ [additive identity]

(4) there is a $-r \in R$ with $r + (-r) = 0_R$ [additive inverse]

(5) $(r \cdot s) \cdot t = r \cdot (s \cdot t)$ [associativity of multiplication]

(6) there is a $1_R \in R$ with $r \cdot 1_R = 1_R \cdot r = r$ [mutliplicative identity]

(7) $r \cdot (s + t) = r \cdot s + r \cdot t$ and $(r + s) \cdot t = r \cdot t + s \cdot t$ [distributivity]

These are the most basic properties of the integers mod n that we used repeatedly. Some others acquire special names:

- A ring $(R, +, \cdot)$ satisfying: for every $r, s \in R, r \cdot s = s \cdot r$ is called *commutative*.
- A commutative ring R satisfying if $rs = 0_R$, then $r = 0_R$ or $s = 0_R$ is called an *integral* domain.
- A ring R satisfying if $r \neq 0_R$, then $r \cdot s = s \cdot r = 1_R$ for some $s \in R$ is called a division ring. In the contract of the contract
- A commutative division ring is called a *field*.

An element $r \in R$ satisfying $r \neq 0_R$ and $r \cdot s = 0_R$ for some $b \neq 0_R$ is called a zero divisor.

An element $r \in R$ satisfying $rs = sr = 1_R$ for some $s \in R$ is called a unit.

An *idempotent* is an element $r \in R$ satifying $r^2 = r$.

A *nupotent* is an element $r \in R$ satisfying $r^* = 0_R$ for some $\kappa \ge 1$.

Examples: The integers \mathbb{Z} , the integers mod $n \mathbb{Z}_n$, the real numbers \mathbb{R} , the complex numbers \mathbb{C} ;

If R is a ring, then the set of all polynomials with coefficients in R, denoted $R[x]$, is a ring, where you add and multiply as you do with "ordinary" polynomials:

$$
R[x] = \{ \sum_{i=0}^{n} r_{r} x^{i} : r_{i} \in R \} \text{ and (filling in with } 0_{R} \text{'s as needed})
$$

$$
\sum_{i=0}^{n} r_{r} x^{i} + \sum_{i=0}^{m} s_{r} x^{i} = \sum_{i=0}^{n} (r_{r} + s_{i}) x^{i} \text{ and } \sum_{i=0}^{n} r_{r} x^{i} \cdot \sum_{j=0}^{m} s_{r} x^{j} = \sum_{k=0}^{n+m} (\sum_{i+j=k}^{n} r_{i} \cdot s_{j}) x^{k}
$$

If R is a ring and $n \in \mathbb{N}$, then the set $M_n(R)$ of $n \times n$ matrices with entries in R is a ring, with entry-wise addition and 'matrix' multiplication:

the
$$
(i, j)
$$
-th entry of $(r_{ij}) \cdot (s_{ij})$ is $\sum_{k=0}^{n} r_{ik} \cdot s_{kj}$

- If R is commutative, then so is $R[x]$; if R is an integral domain, then so is $R[x]$. If $n \geq 2$, then $M_n(R)$ is not commutative.
- A subset $S \subseteq R$ which, using the same addition and multiplication as in R, is also a ring.
- To show that S is a subring of R , we need:
	- (1) if $s, s \in S$, then $s + s$, $s \cdot s \in S$
	- (2) if $s \in S$, then $-s \in S$
	- (3) there is something that acts like a 1 in S (this need not <u>be</u> 1_R ! But $1_R \in S$ is enough...)
- The Cartesian product of two rings R;S is the set $R \times S = \{ (r, s) : r \in R, s \in S \}$. It is a ring, using coordinatewise addition and multiplication: $(r, s) + (r^2, s^2) = (r + r^2, s + s^2)$, $(r, s) \cdot (r, s) = (r \cdot r, s \cdot s)$

Some basic facts:

A ring has only one "zero": if $x + r = r$ for some R, then $x = 0_R$

- A ring has only one "one": if $xr = r$ for every r, then $x = 1_R$
- Every $r \in R$ has only one additive inverse: if $r + x = 0_R$, then $x = -r$
- $(-r) = r$; $0_R \cdot r = r \cdot 0_R = 0_R$; $(-1_R) \cdot r = r \cdot (-1_R) = -r$
- Every finite integral domain is a field; this is because, for any $a \neq 0_R$, the function $m_a : R \to R$ given by $m_a(r) = ar$ is one-to-one, and so by the Pigeonhole Principle is also onto; meaning $ar = 1_R$ for some $r \in R$.
- If R is finite, then every $r \in R$, $r \neq 0_R$, is either a zero-divisor or a unit (and can't be both!). rdea: The first time the sequence $1, r, r^2, r^3, \cdots$ repeats, we either have $r^2 = 1 = r(r^2 - 1)$ or $r^{\ldots} = r^{n+1}, \text{ so } r(r^{n+1}, 1, \ldots, r^n) = 0.$
- A unit in $K \times S$ consists of a pair (r,s) where each of r,s is a unit. (The same is true for idempotents and nilpotents.)
- For $n \in \mathbb{N}$ and $r \in R$, we define $n \cdot x = x + \ldots + x$ (add x to itself n times) and $x^n = x \cdots x$ (multiply x by itself n times). And we define $(-n) \cdot x = (-x) + \cdots + (-x)$. Then we have $(n+m)\cdot r=n\cdot r+m\cdot r,$ $(nm)\cdot r=n\cdot (m\cdot r),$ $r^{m+n}=r^{m}\cdot r^{m},$ $r^{mm}= (r^{m})^{n}$

Homomorphisms and isomorphisms

- A homomorphism is a function $\varphi : R \to S$ from a ring R to a ring S satisfying:
- for any $r, r \in R$, $\varphi(r + r) = \varphi(r) + \varphi(r)$ and $\varphi(r \cdot r') = \varphi(r) \cdot \varphi(r')$.
- The basic idea is that it is a function that "behaves well" with respect to addition and multiplication.
- An *isomorphism* is a homomorphism that is both one-to-one and onto. If there is an isomorphism from R to S, we say that R and S are *isomorphic*, and write $R \cong S$. The basic idea is that isomorphic rings are "really the same"; if we think of the function φ as a way of identifying the elements of R with the elements of S , then the two notions of addition and multiplication on the two rings are identical. For example, the ring of complex numbers $\mathbb C$ is isomorphic to a ring whose elements are the Cartesian product $\mathbb K\times\mathbb K,$ provided we use the multiplication $(a, c) \cdot (c, d) = (ac - bd, ad + bc)$. And the main point is that anything that is true of R (which depends only on its properties as a ring) is also true of anything isomorphic to R, e.g., if $r \in R$ is a unit, and φ is an isomorphism, then $\varphi(r)$ is also a unit.
- The phrase "is ismorphic to" is an equivalence relation: the composition of two isomorphisms is an isomorphism, and the inverse of an isomorphism is an isomorphism.
- A more useful example: if $(m, n) = 1$, then $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$. The isomorphism is given by

 $\varphi([x]_{mn}) = ([x]_m, [x]_n)$

The main ingredients in the proof:

If $\varphi: \kappa \to s$ and $\psi: \kappa \to T$ are ring nomomorphisms, then the function $\omega: \kappa \to s \times T$ given by $\omega(r)=(\varphi(r), \psi(r))$ is also a homomorphism.

If $m|n$, then the function $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ given by $\varphi([x]_n)=[x]_m$ is a homomorphism.

Together, these give that the function we want above is a homomorphism. The fact that $(m, n)=1$ implies that φ is one-to-one; then the Pigeonhole Principle implies that it is also onto!

The above isomorphism and induction imply that if n_1, \ldots, n_k are pairwise relatively prime (i.e., if $i \neq j$ then $(n_i, n_j) = 1$), then $\begin{aligned} \text{rphism and inc}\ \text{and}\ \text{inc}\ \text{in}, n_j) = 1), \text{the}\ \text{inc}\ \mathbb{Z} &\quad \text{c} \mathbb{Z} \end{aligned}$

 $\mathbb{Z}_{n_1\cdots n_k}\cong \mathbb{Z}_{n_1}\times\cdots\times \mathbb{Z}_{n_k}$. This implies:

The Chinese Remainder Theorem: If $n_1, \ldots n_k$ are pairwise relatively prime, then for any $a_1,\ldots,a_k \in \mathbb{N}$ the system of equations

 $x = a_i$ (mod n_i), $i = 1, \ldots k$

has a solution, and any two solutions are congruent modulo $n_1 \cdots n_k$.

A solution can be found by (inductively) replacing a pair of equations $x \equiv a \pmod{n}$, $x \equiv b$ (mod m), with a single equation $x \equiv c \pmod{nm}$, by solving the equation $a + nk = x = b + mj$ for k and j , using the Euclidean Algorithm.

Application to units and the Euler ϕ -function:

If R is a ring, we denote the units in R by R . E.g., $\mathbb{Z}_n = \{ [x]_n ; (x,n) = 1 \}$. From a fact above, we nave $(R \times S)$ = $R \times S$.

 $\phi(n) =$ the number of units in $\mathbb{Z}_n = |\mathbb{Z}_n^*|$; then the CRT implies that if $(m, n) = 1$, then $\phi(mn) =$ $\varphi(m)\varphi(m)$. Induction and the fact that if p is prime $\varphi(p^*) = p^* \cdot (p-1) = p^* -$ (the number of multiples of p) implies

If the prime factorization of n is $p_1^{r_1}\cdots p_k^{r_k}$, then $\phi(n)=[p_1^{r_1-r_1}(p_1-1)]\cdots[p_k^{r_k-r_k}(p_k-1)]$

Groups: Three important properties of the set R^* of units of a ring R:

 $1_R \in R^*$

if $x, y \in R$, then $xy \in R$

 $x \in R$ then (x, y) definition, has a multiplicative inverse x - and) $x_1 \in R$

Together, these three properties (together with associativity of multiplication) describe what is called a group.

A group is a set G together with a single operation (denoted \ast) satisfying:

For any g, h, $k \in G$,

(0) $q * h \in G$ [closure]

(1) $g * (h * k) = (g * h) * k$ [associativity]

(2) there is a $1_G \in G$ satisfying $1_G * g = g * 1_G = g$ [identity]

- (3) there is a $g^{-1} \in G$ satisfying $g^{-1} * g = g * g^{-1} = 1_G$ [inverses]
- A group $(G,*)$ which, in addition, satisfies $g * h = h * g$ for every $g, h \in G$ is called abelian. Since this is something we always expect out of addition, if we know that a group is abelian, we often write the group operation as "+" to help remind ourselves that the operation commutes.

Examples: Any ring $(R, +, \cdot)$, if we just forget about the multiplication, is an (abelian) group $(R, +)$.

- For any ring R , the set of units (R_-, \cdot) is a group using the multiplication from the ring. [[Unsolved] (I think!) question: is every group the group of units for some ring $R?$]
- Function composition is always associative, so one way to build many groups is to think of the elements as functions. But to have an inverse under function composition, a function needs to be both one-to-one and onto. [One-to-one is sometimes also called injective, and onto is called

surjective; a function that is both injective and surjective is called *bijective*. So if, for any set S, we set

 $G = F(S) = \{f : S \rightarrow S : f \text{ is one-to-one and onto}\}$,

- then G is a group under function composition; it is called the group of *permutations* of S . If S is the finite set $\{1, 2, \ldots, n\}$, then we denote the group by S_n , the symmetric group on n letters. By counting the number of bijections from a set with n elements to itself, we find that S_n has n! elements.
- The set of rigid motions of the plane, that is, the functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying dist($f(x)$, $f(y)$) $\phi = \text{dist}(x, y)$ for every $x, y \in \mathbb{R}^2$, is a group under function composition, since the composition or inverse of rigid motions are rigid motions. More generally, for any geometric object T (like a triangle, or square, or regular pentagon, or...), the set of rigid motions f which take T to itself form a group, the group $Symm(T)$ of *symmetries* of T. For example, for $T = a$ square, $Symm(T)$ consists of the identity, three rotations about the center of the square (with rotation angles $\pi/2, \pi$, and $3\pi/2$, and four reflections (through two lines which go through opposite corners of the square, and two lines which go through the centers of opposite sides).
- $G = \text{Aff}(\mathbb{R}) = \{f(x) = ax + b : a \neq 0\}$, the set of linear, non-constant functions from \mathbb{R} to R, form a group under function composition, since the composition of two linear functions is linear, and the inverse of a linear function is linear. It is called the *affine group of* \mathbb{R} . This is an example of a *subgroup* of $P(\mathbb{R})$:
- A subgroup H of G is a subset $H \subseteq G$ which, using the same group operation as G, is a group in its own right. As with subrings, this basically means that:
	- (1) If $h, k \in H$, then $h * k \in H$
	- (2) If $h \in H$, then $h^{-1} \in H$
	- (3) $1_G \in H$.
- Condition (3) really need not be checked (so long as $H \neq \emptyset$), since, for any $h \in H$, (2) guarantees that $h^{-1} \in H$, and so (1) implies that $h * h^{-1} = 1_G \in H$.
- For example, for the symmetries of a polygon T in the plane, since a symmetry must take the corners of T (called its vertices) to the corners, each symmetry can be thought of as a permutation of the vertices. So $Symm(T)$ can be thought of (this can be made precise, using the notion of isomorphism below) as a subgroup of the group of symmetries of the set of vertices of T .

As with rings, some basic facts about groups are true:

There is only one "one" in a group; if $x \in G$ satisfies $x * y = y$ for some $y \in G$, then $x = 1_G$ Every $g \in G$ has only one inverse: if $g * h = 1_G$, then $h = g^{-1}$ $(q^{-1})^{-1} = q$ for every $q \in G$ $(gh)^{-1} = h^{-1}g^{-1}$

- Homomorphisms and isomorphisms: Just as with rings, again, we have the notion of functions between groups which \respect" the group operations:
- A homomorphism is a function $\varphi : G \to H$ from groups G to H which satisfies:

for every $g_1, g_2 \in G$, $\varphi(g_1 * g_2) = \varphi(g_1) * \varphi(g_2)$

- No other condition is required, since this implies that $\varphi(1_G)=1_H$, as well as $) = (\varphi(g))$.
- An *isomorphism* is a homomorphism that is also one-to-one and onto. If there is an isomorphism from G to H , we say that G and H are *isomorphic*. As with rings, the idea is that ismorphic groups are really the "same"; the function is a way of identifying elements so that the two groups are identical (as groups!). For example, the group AH(K) can be thought of as $K \times K$ (i.e., the pair of coefficients of the linear function), but with the group multiplication given by (by working out what the coefficients of the composition are!) $(a, b) * (c, d) = (ac, ad + b)$.