
Math 310

Handy facts for the second exam

Don't forget the handy facts from the �rst exam!

Fermat's Little Theorem. If p is prime and (a; p) = 1, then ap�1 �
p
1

Because: (a � 1)(a � 2)(a � 3) � � � (a � (p� 1)) �
p

1 � 2 � 3 � � � (p� 1) , and (1 � 2 � 3 � � � (p� 1); p) = 1 .

Same idea, looking at the a's between 1 and n� 1 that are relatively prime to n (and letting
�(n) be the number of them), gives

If (a; n) = 1, then a�(n) �
n
1 .

�(n) = n� 1 only when n is prime. Numbers n which are not prime but for which an�1 �
n
1 are

called a-pseudoprimes; they are very uncommon!

One approach to calculating ak (mod n) quickly is to start with a, and repeatedly square the
result (mod n), computing a1; a2; a4; a8; a16. etc. , continuing until the resulting exponent is
more than half of k . ak is then the product of some subset of our list - we essentially use the
powers whose exponents are part of the base 2 expansion of k.

Rings. Basic idea: �nd out what makes our calculations in Zn work.

A ring is a set R together with two operations +; � (which we call addition and multiplication)
satisfying:

For any r; s; t 2 R,
(0) r + s; r � s 2 R [closure]
(1) (r + s) + t = r + (s+ t) [associativity of addition]
(2) r + s = s+ r [commutativity of addition]
(3) there is a 0R 2 R with r + 0R = r [additive identity]
(4) there is a �r 2 R with r + (�r) = 0R [additive inverse]
(5) (r � s) � t = r � (s � t) [associativity of multiplication]
(6) there is a 1R 2 R with r � 1R = 1R � r = r [mutliplicative identity]
(7) r � (s+ t) = r � s+ r � t and (r + s) � t = r � t+ s � t [distributivity]

These are the most basic properties of the integers mod n that we used repeatedly. Some others
acquire special names:

A ring (R;+; �) satisfying: for every r; s 2 R, r � s = s � r is called commutative.

A commutative ring R satisfying if rs = 0R, then r = 0R or s = 0R is called an integral

domain.

A ring R satisfying if r 6= 0R, then r � s = s � r = 1R for some s 2 R is called a
division ring.

A commutative division ring is called a �eld.

An element r 2 R satisfying r 6= 0R and r � s = 0R for some b 6= 0R is called a zero divisor.

An element r 2 R satisfying rs = sr = 1R for some s 2 R is called a unit.

An idempotent is an element r 2 R satifying r2 = r .

A nilpotent is an element r 2 R satisfying rk = 0R for some k � 1 .

Examples: The integers Z, the integers mod n Zn, the real numbers R, the complex numbers C ;

If R is a ring, then the set of all polynomials with coeÆcients in R, denoted R[x], is a ring, where
you add and multiply as you do with \ordinary" polynomials:
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If R is a ring and n 2 N, then the set Mn(R) of n� n matrices with entries in R is a ring, with
entry-wise addition and `matrix' multiplication:

the (i; j)-th entry of (rij) � (sij) is
nX

k=0

rik � skj

If R is commutative, then so is R[x] ; if R is an integral domain, then so is R[x]. If n � 2, then
Mn(R) is not commutative.

A subring is a subset S � R which, using the same addition and multiplication as in R, is also a
ring.

To show that S is a subring of R, we need:

(1) if s; s0 2 S, then s+ s0; s � s0 2 S
(2) if s 2 S, then �s 2 S
(3) there is something that acts like a 1 in S (this need not be 1R ! But 1R 2 S is enough...)

The Cartesian product of two rings R;S is the set R � S = f(r; s) : r 2 R; s 2 Sg . It is
a ring, using coordinatewise addition and multiplication: (r; s) + (r0; s0) = (r + r0; s + s0) ,
(r; s) � (r0; s0) = (r � r0; s � s0)

Some basic facts:

A ring has only one \zero": if x+ r = r for some R, then x = 0R
A ring has only one \one": if xr = r for every r, then x = 1R
Every r 2 R has only one additive inverse: if r + x = 0R, then x = �r
�(�r) = r ; 0R � r = r � 0R = 0R ; (�1R) � r = r � (�1R) = �r

Every �nite integral domain is a �eld; this is because, for any a 6= 0R, the function ma : R ! R
given by ma(r) = ar is one-to-one, and so by the Pigeonhole Principle is also onto; meaning
ar = 1R for some r 2 R .

If R is �nite, then every r 2 R, r 6= 0R, is either a zero-divisor or a unit (and can't be both!).
Idea: The �rst time the sequence 1; r; r2; r3; � � � repeats, we either have rn = 1 = r(rn�1) or
rn = rn+k, so r(rn+k�1 � rn�1) = 0 .

A unit in R � S consists of a pair (r; s) where each of r; s is a unit. (The same is true for
idempotents and nilpotents.)

For n 2 N and r 2 R, we de�ne n � x = x+ : : : + x (add x to itself n times) and xn = x � � � � � x
(multiply x by itself n times). And we de�ne (�n) � x = (�x) + � � � + (�x) . Then we have

(n+m) � r = n � r +m � r, (nm) � r = n � (m � r), rm+n = rm � rn, rmn = (rm)n

Homomorphisms and isomorphisms

A homomorphism is a function ' : R! S from a ring R to a ring S satisfying:
for any r; r0 2 R , '(r + r0) = '(r) + '(r0) and '(r � r0) = '(r) � '(r0) .

The basic idea is that it is a function that \behaves well" with respect to addition and multipli-
cation.

An isomorphism is a homomorphism that is both one-to-one and onto. If there is an isomorphism
from R to S, we say that R and S are isomorphic, and write R �= S . The basic idea is that
isomorphic rings are \really the same"; if we think of the function ' as a way of identifying
the elements of R with the elements of S, then the two notions of addition and multiplication
on the two rings are identical. For example, the ring of complex numbers C is isomorphic to
a ring whose elements are the Cartesian product R � R, provided we use the multiplication
(a; c) � (c; d) = (ac� bd; ad+ bc) . And the main point is that anything that is true of R (which
depends only on its properties as a ring) is also true of anything isomorphic to R, e.g., if r 2 R
is a unit, and ' is an isomorphism, then '(r) is also a unit.

The phrase \is ismorphic to" is an equivalence relation: the composition of two isomorphisms is
an isomorphism, and the inverse of an isomorphism is an isomorphism.

A more useful example: if (m;n) = 1, then Zmn
�= Zm� Zn . The isomorphism is given by
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'([x]mn) = ([x]m; [x]n)

The main ingredients in the proof:

If ' : R! S and  : R! T are ring homomorphisms, then the function ! : R! S � T given by
!(r) = ('(r);  (r)) is also a homomorphism.

If mjn, then the function ' : Zn ! Zm given by '([x]n) = [x]m is a homomorphism.

Together, these give that the function we want above is a homomorphism. The fact that (m;n) = 1
implies that ' is one-to-one; then the Pigeonhole Principle implies that it is also onto!

The above isomorphism and induction imply that if n1; : : : nk are pairwise relatively prime (i.e.,
if i 6= j then (ni; nj) = 1), then

Zn1���nk
�= Zn1 � � � � � Znk . This implies:

The Chinese Remainder Theorem: If n1; : : : nk are pairwise relatively prime, then for any
a1; : : : ak 2 N the system of equations

x � ai (mod ni), i = 1; : : : k

has a solution, and any two solutions are congruent modulo n1 � � � nk .

A solution can be found by (inductively) replacing a pair of equations x � a (mod n) , x � b
(mod m), with a single equation x � c (mod nm), by solving the equation a+nk = x = b+mj
for k and j, using the Euclidean Algorithm.

Application to units and the Euler �-function:

If R is a ring, we denote the units in R by R� . E.g., Z�

n = f[x]n ; (x; n) = 1g. From a fact above,
we have (R� S)� = R� � S� .

�(n) = the number of units in Zn = jZ�

nj; then the CRT implies that if (m;n) = 1, then �(mn) =
�(m)�(m) . Induction and the fact that if p is prime �(pk) = pk�1(p� 1) = pk�(the number
of multiples of p) implies

If the prime factorization of n is p�11 � � � p�kk , then �(n) = [p�1�1
1 (p1 � 1)] � � � [p�k�1

k (pk � 1)]

Groups: Three important properties of the set R� of units of a ring R:

1R 2 R�

if x; y 2 R�, then xy 2 R�

if x 2 R� then (x, by de�nition, has a multiplicative inverse x�1 and) x�1 2 R�

Together, these three properties (together with associativity of multiplication) describe what is
called a group.

A group is a set G together with a single operation (denoted �) satisfying:

For any g; h; k 2 G,

(0) g � h 2 G [closure]

(1) g � (h � k) = (g � h) � k [associativity]

(2) there is a 1G 2 G satisfying 1G � g = g � 1G = g [identity]

(3) there is a g�1 2 G satisfying g�1 � g = g � g�1 = 1G [inverses]

A group (G:�) which, in addition, satis�es g � h = h � g for every g; h 2 G is called
abelian. Since this is something we always expect out of addition, if we know that a group is
abelian, we often write the group operation as \+" to help remind ourselves that the operation
commutes.

Examples: Any ring (R;+; �), if we just forget about the multiplication, is an (abelian) group
(R;+) .

For any ring R, the set of units (R�; �) is a group using the multiplication from the ring. [[Unsolved
(I think!) question: is every group the group of units for some ring R?]]

Function composition is always associative, so one way to build many groups is to think of the
elements as functions. But to have an inverse under function composition, a function needs to
be both one-to-one and onto. [One-to-one is sometimes also called injective, and onto is called
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surjective; a function that is both injective and surjective is called bijective.] So if, for any set
S, we set

G = P (S) = ff : S ! S : f is one-to-one and ontog ,

then G is a group under function composition; it is called the group of permutations of S. If S is
the �nite set f1; 2; : : : ; ng, then we denote the group by Sn, the symmetric group on n letters.
By counting the number of bijections from a set with n elements to itself, we �nd that Sn has
n! elements.

The set of rigid motions of the plane, that is, the functions f : R2 ! R
2 satisfying dist(f(x); f(y))

= dist(x; y) for every x; y 2 R2 , is a group under function composition, since the composition
or inverse of rigid motions are rigid motions. More generally, for any geometric object T (like
a triangle, or square, or regular pentagon, or...), the set of rigid motions f which take T to
itself form a group, the group Symm(T ) of symmetries of T . For example, for T = a square,
Symm(T ) consists of the identity, three rotations about the center of the square (with rotation
angles �=2; �;, and 3�=2), and four re
ections (through two lines which go through opposite
corners of the square, and two lines which go through the centers of opposite sides).

G = A�(R) = ff(x) = ax + b : a 6= 0g , the set of linear, non-constant functions from R to
R, form a group under function composition, since the composition of two linear functions is
linear, and the inverse of a linear function is linear. It is called the aÆne group of R. This is
an example of a subgroup of P (R):

A subgroup H of G is a subset H � G which, using the same group operation as G, is a group in
its own right. As with subrings, this basically means that:

(1) If h; k 2 H, then h � k 2 H
(2) If h 2 H, then h�1 2 H
(3) 1G 2 H .

Condition (3) really need not be checked (so long as H 6= ;), since, for any h 2 H, (2) guarantees
that h�1 2 H, and so (1) implies that h � h�1 = 1G 2 H .

For example, for the symmetries of a polygon T in the plane, since a symmetry must take the
corners of T (called its vertices) to the corners, each symmetry can be thought of as a permuta-
tion of the vertices. So Symm(T ) can be thought of (this can be made precise, using the notion
of isomorphism below) as a subgroup of the group of symmetries of the set of vertices of T .

As with rings, some basic facts about groups are true:

There is only one \one" in a group; if x 2 G satis�es x � y = y for some y 2 G, then x = 1G
Every g 2 G has only one inverse: if g � h = 1G, then h = g�1

(g�1)�1 = g for every g 2 G

(gh)�1 = h�1g�1

Homomorphisms and isomorphisms: Just as with rings, again, we have the notion of func-
tions between groups which \respect" the group operations:

A homomorphism is a function ' : G! H from groups G to H which satis�es:
for every g1; g2 2 G, '(g1 � g2) = '(g1) � '(g2)

No other condition is required, since this implies that
'(1G) = 1H ,as well as '(g�1) = ('(g))�1 .

An isomorphism is a homomorphism that is also one-to-one and onto. If there is an isomorphism
from G to H, we say that G and H are isomorphic. As with rings, the idea is that ismorphic
groups are really the \same"; the function is a way of identifying elements so that the two
groups are identical (as groups!). For example, the group A�(R) can be thought of as R � R

(i.e., the pair of coeÆcients of the linear function), but with the group multiplication given by
(by working out what the coeÆicients of the composition are!) (a; b) � (c; d) = (ac; ad+ b) .
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