
Math 314

Topics for first exam

Systems of linear equations

2x − 3y − z = 6
3x + 2y + z = 7

Goal: find simultaneous solutions: all x, y, z satisfying both equations.
Most general type of system:

a11x1 + · · · + a1nxn = b1

· · ·
am1x1 + · · · + amnxn = bm

Gaussian elimination: basic ideas

3x + 5y = 2
2x + 3y = 1

Idea use 3x in first equation to eliminate 2x in second equation. How? Add a multiple of first
equation to second. Then use y-term in new second equation to remove 5y from first!
The point: a solution to the original equations must also solve the new equations. The real point:
it’s much less complicated to figure out the solutions of the new equations!

Streamlining: keep only the essential information; throw away unneeded symbols!

3   5      2
2   3      1

3x+5y=2
2x+3y=1

replace
with

We get an (augmented) matrix representing the system of equations. We carry out the same
operations we used with equations, but do them to the rows of the matrix.
Three basic operations (elementary row operations):

Eij : switch ith and jth rows of the matrix
Eij(m) : add m times jth row to the ith row
Ei(m) : multiply ith row by m

Terminology: first non-zero entry of a row = leading entry; leading entry used to zero out a
column = pivot.
Basic procedure (Gauss-Jordan elimination): find non-zero entry in first column, switch up to first
row (E1j) (pivot in (1,1) position). Use E1(m) to make first entry a 1, then use E1j(m) operations
to zero out the other entries of the first column. Then: find leftmost entry in remaining rows, switch
to second row, use as a pivot to clear out the entries in the column below it. Continue (forward
solving). When done, use pivots to clear out entries in column above the pivots (back-solving).

Variable in linear system corresponding to a pivot = bound variable; other variables = free
variables

Gaussian elimination: general procedure

The big fact: After elimination, the new system of linear equations have the exact same solu-
tions as the old system. Because: row operations are reversible!
Reverse of Eij is Eij ; reverse of Eij(m) is Eij(−m); reverse of Ei(m) is Ei(1/m)
So: you can get old equations from new ones; so solution to new equations must solve old equations
as well.

Row echelon form: apply elementary row operations so turn matrix A into one so that
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(a) each row looks like (000 · · · 0 ∗ ∗ · · · ∗); firsdt ∗ = leading entry
(b) leading entry for row below is further to the right

Reduced row echelon form: in addition, have
(c) each leading entry is = 1
(d) each leading entry is the only non-zero number in its column.

REF can be achieved by forward solving; RREF by back-solving and Ei(m) ’s
Elimination: every matrix can be put into RREF by elementary row operations.
Big Fact: If a matrix A is put into RREF by two different sets of row operations, you get the same
matrix.
With the RREF of an augmented matrix: can read off solutions to linear system.

1   0   2   0      2
0   1   1   0      1
0   0   0   1      3

means x =3, x =1-x
x =2-2x1

2 34

3 ; x  is free3

Inconsistent systems: row of zeros in coefficient matrix, followed by a non-zero number (e.g., 2).
Translates as 0=2 ! System has no solutions.

We can understand the existence and number of solutions using
number of pivot variables = number of columns in (R)REF containing a pivot
number of free variables = number of columns in (R)REF not containing a pivot

A = coefficient matrix, Ã = augmented matrix (A = m × n matrix)
System is consistent if and only if in (R)REF a row containing no pivot consists of all 0’s in Ã.
A consistent system has a unique solution if and only if there are no free variables; there is a

pivot in every row.

Spanning sets and linear independence

We can interpret an SLE in terms of (column) vectors; writing vi = ith column of the coefficient
matrix, and b=the column of target values, then our SLE really reads as a single equation x1v1 +
· · ·+xnvn = b. The lefthand side of this equation is a linear combination of the vectors v1, . . . , vn,
that is, a sum of scalar multiples. Asking if the SLE has a solution is the same as asking if b is a
linear combination of the vi.
This is an important enough concept that we introduce new terminology for it; the span of a
collection of vectors, span(v1, . . . , vn) is the collection of all linear combinations of the vectors. If
the span of the (m × 1) column vectors v1, . . . , vn is all of R

m, we say that the vectors span R
m.

Asking if an SLE has a solution is the same as asking if the target vector is in the span of the
column vectors of the coefficient matrix.

The flipside of spanning is linear independence. A collection of vectors v1, . . . , vn is linearly in-
dependent if the only solution to x1v1 + · · · + xnvn = 0 (the 0-vector) is x1 = · · · = xn = 0
(the “trivial” solution). If there is a non-trivial solution, then we say that the vectors are linearly
dependent. If a collection of vectors is linearly dependent, then choosing a non-trivial solution
and a vector with non-zero coefficient, throwing everything else on the other side of the equation
expresses one vector as a linear combination of all of the others. Thinking in terms of an SLE, the
columns of a matrix are linearly dependent exactly when the SLE with target 0 has a non-trivial
solution, i.e., has more than one solution. It has the trivial (all 0) solution, so it is consistent, so
to have more than one, we need the the RREF for the matrix to have a free variable, i.e., the rank
of the coefficient matrix is less than the number of columns.
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Matrix addition and scalar multiplication

Idea: take our ideas from vectors. Add entry by entry. Constant multiple of matrix: multiply
entry by entry.
0 = matrix all of whose entries are 0
Basic facts:

A+B makes sense only if A and B are the same size (m×n) matrix
A+B = B+A
(A+B)+C = A+(B+C)
A+0 = A
A+(-1)A = 0
cA has the same size as A
c(dA) = (cd)A
(c+d)A = cA + dA
c(A+B) = cA + cB
1A = A

Matrix equations

We can also think of a system of equations as a single matrix equation A~x = ~b, by interpreting the
product of our coefficient matrix A and our column vector of xariables ~x as the ~x-linear combination
of the columns of A. This multplication behaves well with vector addition and scalar multiplication

A(~u + ~v) = A~u + A~v A(a~u) = a · A~u

(We say that this matrix multiplication is linear.) Because of this, any two solutions to A~x = ~b,

say ~u and ~v have A(~u− ~v) = ~b−~b = ~0, the all-0 vector. If we treat ~u as a “particular” solution to

Z~x = ~b, then any other solution ~v = ~u + (~v − ~u) = ~u + ~n is our particuilar solution plus a solution
to A~c = ~0, a “homogeneous” solution.

But we can show that the solutions to A~x = ~0 are precisely the span of a collection of vectors, one
for each free variable of the RREF of A. This is done by row reducing the system A~x = ~0 and
writing the solutions in terms of the free variables; this can be expressed as a linear combination
of the solutions obtained by setting each free variable equal to 1, in turn (and all of the others to
0).

Some applications

A model of an economy:
An economy consists of ‘sectors’, whose output is used as matierials for other sectors (including its
own). The exchange of outputs is carried out by paying for it; each sector has a price for its output.
At equilibrium, the amount paid by each sector for the resources it needs will equal the income it
earns from the sale of its output. We assume all output is consumed by the sectors (no surplus,
no shortage). To determine what prices should be charged by each sector in this equilibrium, we
solve a system of equations which asserts that (for sectors 1 through n)

the amount earned, pi by a sector equals the total amount paid ai,1p1 + · · · + ai,bpn by the sector
for its resources (where the ai,j are (known) fractions of sector j’s output allocated to sector i (and
so, for each j, a1,j + · · · + an,j = 1.

Solving the system will always yield a free variable; setting that variable to 1 yields the relative
prices to set (we can always double all prices and still solve the equations!).

Balancing chemical reactions:
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In a chemical reaction, some collection of molecules is converted into some other collection of
molecules. The proportions of each can be determined by solving an SLE:

E.g., when ethane is burned, x C2H6 and y O2 is converted into z CO2 and w H2O. Since the
number of each element must be the same on both sides of the reaction, we get a system of equations

C : 2x = z ; H : 6x = 2w ; O : 2y = w .
which we can solve. More complicated reactions, e.g., PbO2 + HCl → PbCl2 + CL2 + H2O, yield
more complicated equations, but can still be solved using the techniques we have developed.

Network Flow:
We can model a network of water pipes, or trafic flowing in a city’s streets, as a graph, that is, a
collection of points = vertices (=intersections=junctions) joined by edges = segments (=streets =
pipes). Monitoring the flow along particular edges can enable us to know the flow on every edge,
by solving a system of equations; at every vertex, the net flow must be zero. That is, the total flow
into the vertex must equal the total flow out of the vertex. Giving the edges arrows, depicting the
direction we think traffic is flowing along that edge, and labeling each edge with either the flow
we know (monitored edge) or a variable denoting the flow we don’t, we have a system of equations
(sum of flows into a vertex) = (sum of flows out of the vertex). Solving this system enables us to
determine the value of every variable, i.e., the flow along every edge. A negative value means that
the flow is opposite to the one we expected.

Linear transformations

From a different point of view, the matrix product A~x = ~b can be viewed as a function A takes
a vector ~x and produces a vector A~x (the vetor of dot products of the rows of A with ~x). This
function TA(~x) = A~x is linear:

TA(~u + ~v) = TA(~u) + TA(~v) TA(a~u) = aTA(~u)

more generally, any function T : R
n → R

m satisfying these properties is called a linear transforma-

tion. We can find them in many of the operations we carry out on vectors; reflections, rotations,
and many other geometric operations (that leave the origin fixed) can be viewed as linear trans-
formations. [Note that since T (~0) = T (0 ·~0) = 0 · T (~0) = ~0, any linear transformation must send ~0
to ~0.]

Matrix multiplication is our model for a linear transformation. In fact, every lin. transf. can be
viewed as multiplication by some A, since, letting ~ei stand for the i-th standard coordinate vector
(all 0’s, except for a 1 in the i-th place), A~ei = the i-th column of A. So if we build a matrix A
with i-th column equal to T (~ei), then A~x and T (~x) must be equal, since using linearity both are
equal to the ~x − linearcombinationofthecolumnssofA= T (~ei).

For example, we can find the matrix corresponding to rotation Rθ by an angle θ by determining
that Rθ(~e1) = (cos θ, sin θ)T and Rθ(~e2) = (− sin θ, cos θ)T .

Matrix multiplication

Idea: A~x is a function TA, so A(B~x) = TA(TB(~x)) = (TA ◦ TB)(~x) is the composition of two linear
functions, which is linear! So TA ◦ TB should be equal to multiplication by some matrix, which
we will call AB ! To figure it out, we use the fact that the columns of AB should be the vectors
A(B~ei), which is A times the i-th column of B. So we define matrix muliplication this way!

In AB, each row of A is ‘multiplied’ by each column of B to obtain an entry of AB. Need: the
length of the rows of A (= number of columns of A) = length of columns of B (= number of rows
of B). I.e, in order to multiply, A must be m×n, and B must be n×k; AB is then m×k.

Formula: (i,j)th entry of AB is Σn
k=1

aikbkj (the dot product of the i-th row of A and the j-th
column of B).
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I = identity matrix; square matrix (n×n) with 1’s on diagonal, 0’s off diagonal
Basic facts:

AI = A = IA
(AB)C = A(BC)
c(AB) = (cA)B = A(cB)
(A+B)C = AC + BC
A(B+C) = AB + AC

In general, however it is **not** **not** true that AB and BA are the same; they are almost
always different! ****

Special matrices and transposes

Elementary matrices:
A row operation (Eij , Eij(m) , Ei(m)) applied to a matrix A corresponds to multiplication (on
the left) by a matrix (also denoted Eij , Eij(m) , Ei(m)) The matrices are obtained by applying
the row operation to the identity matrix In. E.g., the 4×4 matrix E13(−2) looks like I, except it
has a −2 in the (1,3)th entry.
The idea: if A → B by the elementary row operation E, then B = EA.
So if A → B → C by elementary row operations, then C = E2E1A ....
Row reduction is matrix multiplication!

A scalar matrix A has the same number c in the diagonal entries, and 0’s everywhere else (the
idea: AB = cB)
A diagonal matrix has all entries zero off of the (main) diangonal
A upper triangular matrix has entries =0 below the diagonal, a lower triangular matrix is 0 above
the diagonal. A triangular matrix is either upper or lower triangular.
A strictly triangular matrix is triangular, and has zeros on the diagonal, as well. They come in
upper and lower flavors.

The transpose of a matrix A is the matrix AT whose columns are the rows of A (and vice versa).
AT is A reflected across the main diagonal. (aij)T = (aji) ; (m×n)T = (n×m)
Basic facts:

(A + B)T = AT + BT

(AB)T = BT AT

(cA)T = cAT

(AT )T = A
Transpose of an elementary matrix is elementary:
ET

ij = Eij , Eij(m)T = Eji(m) , Ei(m)T = Ei(m)

Matrix inverses

One way to solve A~x = ~b : ‘divide’ by Q ! That is, find a matrix B with BA = I . When is there
such a matrix?
This tells us that the solution is unique; it must be B~b. So in (R)REF A must have no free
variables. So there is a pivot in every column. But it also tells us that the system has a solution!
So there must be a pivot in every row, as well. This implies that the RREF of A must be the
identity matrix (in part, A must be square).
A matrix B is an inverse of A if AB=I and BA=I; it turns out, the inverse of a matrix is always
unique. We call it A−1 (and call A invertible).
Finding A−1 : row reduction! (of course...)
Build the ”super-augmented” matrix (A|I) (the matrix A with the identity matrix next to it). Row
reduce A, and carry out the operations on the entire row of the S-A matrix (i.e., carry out the
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identical row operations on I). Wnem done, if invertible+ the left-hand side of the S-A matrix will
be I; the right-hand side will be A−1 !
I.e., if (A|I) → (I|B) by row operations, then I=BA .

We can also understand this via row operations, since, it turns out, each row operation can be
viewed as multiplication (on the left) by an ‘elementary’ matrix. So if we multiply A (on the left)
by the correct elementary matrices, you get I; call the product of those matrices B and you get
BA=I !

Basic facts:
(A−1)−1 = A
if A and B are invertible, then so is AB, and (AB)−1 - B−1A−1

(cA)−1 = (1/c)A−1

(AT )−1 = (A−1)T

If A is invertible, and AB = AC, then B = C; if BA = CA, then B = C.
Inverses of elementary matrices:

E−1

ij = Eij , Eij(m)−1 = Eij(−m) , Ei(m)−1 = Ei(1/m)
Highly useful formula: for a 2-by-2 matrix,

A= a   b
c   d

d   -b
-c   aD

D=ad-bc A -1and 1, =

(Note: need D=ad-bc 6= 0 for this to work....)
Some conditions for/consequences of invertibility: the following are all equivalent (A = n-by-n
matrix).

1. A is invertible,
2. r(A) = n.
3. The RREF of A is In.
4. Every linear system Ax=b has a unique solution.
5. For one choice of b, Ax=b has a unique solution (i.e., if one does, they all do...).
6. The equation Ax=0 has only the solution x=0.
7. There is a matrix B with BA=I.

The equivalence of 4. and 6. is sometimes stated as Fredholm’s alternative: Either every
equation Ax=b has a unique solution, or the equation Ax=0 has a non-trivial solution (and only
one of the alternatives can occur).
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