
Math 314/814

Topics for second exam

Technically, everything covered by the first exam plus

Inverses.

Some conditions for/consequences of invertibility:
the following are all equivalent (A = n-by-n matrix).

0. A is invertible,
1. The RREF of A is In.
2. A has n pivots.
3. The equation A~x = ~0 has only the solution x=0.
4. The columnsof A are linearly independent.
5. TA(~x) = A~x is one-to-one.

6. Every linear system A~x = ~b has a solution.
7. The columns of A span R

n.
8. TA(~x) = A~x is onto.
9. There is a matrix C with CA = In.
10. There is a matrix B with AB = In.
11. AT is invertible,
12. For one choice of ~b, A~x = ~b has a unique solution.
13. For every choice of ~b, A~x = ~b has a unique solution.

The equivalence of 3. and 13. is sometimes stated as Fredholm’s alternative: Either every
equation A~x = ~b has a unique solution, or the equation A~x = ~0 has a non-trivial solution (and
only one of the alternatives can occur).

Determinants.

(Square) matrices come in two flavors: invertible (all Ax = b have a solution) and non-invertible
(Ax = ~0 has a non-trivial solution). It is an amazing fact that one number identifies this difference;
the determinant of A.

For 2×2 matrices A =

(

a b
c d

)

, this number is det(A)=ad− bc; if 6= 0, A is invertible, if =0, A is

non-invertible (=singular).
For larger matrices, there is a similar (but more complicated formula):
A= n × n matrix, Mij(A) = matrix obtained by removing ith row and jth column of A.
det(A) = Σn

i=1(−1)i+1ai1det(Mi1(A))
(this is called expanding along the first column)

Amazing properties:
If A is upper triangular, then det(A) = product of the entries on the diagonal
If you multiply a row of A by c to get B, then det(B) = cdet(A)
If you add a mult of one row of A to another to get B, then det(B) = det(A)
If you switch a pair of rows of A to get B, then det(B) = −det(A)

In other words, we can understand exactly how each elementary row operation affects the deter-
minant. In part, A is invertible iff det(A) 6= 0.

In fact, we can use row operations to calculate det(A) (since the RREF of a matrix is upper
triangular). We just need to keep track of the row operations we perform, and compensate for the
changes in the determinant;

1

det(A) = (1/c)det(Ei(c)A) , det(A) = (−1)det(EijA)

More interesting facts:
det(AB) = det(A)det(B) ; det(AT) = det(A) ; det(A−1) = [det(A)]−1

We can expand along other columns than the first: for any fixed value of j (= column),
det(A) = Σn

i=1(−1)i+jaijdet(Mij(A))
(expanding along jth column)
And since det(AT) = det(A), we could expand along rows, as well.... for any fixed i (= row),
det(A) = Σn

j=1(−1)i+jaijdet(Mij(A))

Vector Spaces.

Basic idea: a vector space V is a collection of things you can add together, and multiply by scalars
(= numbers)
V = things for which v,w ∈ V implies v + v ∈ V ; a ∈ R and v ∈ V implies a · v ∈ V

E.g., V =R
2, add and scalar multiply componentwise

V =all 3-by-2 matrices, add and scalar multiply entrywise
P2={ax2 + bx + c : a, b, c ∈ R} = polynomials of degree ≤2; add, scalar multiply as functions
More generally: Pn = {all polynomials of degree ≤ n} is a vector space

The standard vector space of dimension n : R
n = {(x1, . . . , xn) : xi ∈ R all i}

An abstract vector space is a set V together with some notion of addition and scalar multiplication,
satisfying the ‘usual rules’: for u, v,w ∈ V and c, d ∈ R we have

u + v ∈ V , cu ∈ V
u + v = v + u, u + (v + w) = (u + v) + w
There is ~0 ∈ V and −u ∈ V with ~0 + u = u all u, and u + (−u) = ~0
c(u + v) = cu + cv, (c + d)u = cu + du, (cd)u = c(du), 1u = u

Examples: R
m,n = all m × n matrices, under matrix addition/scalar mult

C[a, b] = all continuous functions f :[a, b]→ R, under function addition
{A ∈ R

n,n : AT = A} = all symmetric matrices, is a vector space

Note: {f ∈ C[a, b] : f(a) = 1} is not a vector space (e.g., has no ~0)
Basic facts:
0v = ~0, c~0 = ~0, (−c)v = −(cv); cv = ~0 implies c = 0 or v = ~0
A vector space (=VS) has only one ~0; a vector has only one additive inverse

Linear operators/transformations:
T : V → W is a linear operator if T (cu + dv) = cT (u) + dT (v) for all c, d ∈ R, u, v ∈ V
Example: TA : R

n → R
m, TA(v) = Av, is linear

T : C[a, b] → R, T (f) = f(b), is linear

T : R
2 → R, T (x, y) = x − xy + 3y is not linear!

Subspaces
Basic idea: V = vector space, W ⊆ V , then to check if W is a vector space, using the same
addition and scalar multiplication as V , we need only check two things:

whenever c ∈ R and u, v ∈ W , we always have cu, u + v ∈ W (W is “closed” under addition and
scalar multiplication).

All other properties come for free, since they are true for V !
If V is a VS, W ⊆ V and W is a VS using the same operations as V , we say that W is a (vector)
subspace of V .

Examples: {(x, y, z) ∈ R
3 : z = 0} is a subspace of R

3

2

{(x, y, z) ∈ R
3 : z = 1} is not a subspace of R

3

{A ∈ R
n,n : AT = A} is a subspace of R

n,n

Basic construction: v1, · · · , vn ∈ V
W = {a1v1 + · · · anvn : a1, . . . , an ∈ R = all linear combinations of v1, · · · , vn = span{v1, · · · , vn}
= the span of v1, · · · , vn , is a subspace of V

Basic fact: if w1, . . . , wk ∈ span{v1, · · · , vn}, then span{w1, · · · , wk} ⊆ span{v1, · · · , vn}

Subspaces from matrices
column space of A = C(A) = span{the columns of A}
row space of A = R(A) = span{(transposes of the) rows of A}
nullspace of A = N (A) = {x ∈ R

n : Ax = ~0}

(Check: N (A) is a subspace!)

Alternative view Ax = lin comb of columns of A, so is in col(A); in fact, col(A) = {Ax : x ∈ R
n}.

So col(A) is the set of vectors b for which Ax = b has a solution. Any two solutions Ax = b = Ay
have A(x − y) = AX − Ay = b − b = 0, so x − y is in null(A). So the collection of all solutions to
AX = b are (particular solution)+(vector in null(A)). So col(A) tells is which SLEs have solutions,
and null(A) tells us how many solutions there are.

The descriptions of C(A) and N (A) are fundamentally different; C(A) tells us how to (quickly)
build elements of the subspace, while N (A) tells us how to (quickly) decide if a vector is in the
subspace. As written, doing the other thing for the other subspace requires ‘work’ (that is, row
reduction!). But we can (by row reduction) describe each subspace in terms matching the other,
to make the corresponding task - building versus deciding - quick, as well.

To view N (A) as a column space, row reduce A! In RREF, we can write the solutions to A~x = ~0
as a linear combination of vectors, one for each free variable, by solving for each pivot variable in
terms of the free ones. These vectors then span N (A); writing them as the columns of a matrix
B, we have N (A) = C(B).

To view C(A) as a nullspace, row reduce the super-augmented matrix (A|In) → (R|B). From our

inverse work, we know that BA = R. So (A|~b) row reduces to (R|B~b). In RREF, the rows ri of

B opposite the rows of 0’s in R tell us that for (A|~b) to be consistent we must have (ri)~b = 0 for

each i. Assembling these ri into a matrix, Q, we then have that ~b ∈ C(A) precisely when Q~b = ~0,

i.e., ~b ∈ N (Q). So C(A) = N (Q) !

Subspaces from linear operators: T : V → W
image of T = im(T) = {Tv : v ∈ V }
kernel of T = ker(T) = {x : T (x) = ~0}

When T = TA, im(T) = C(A), and ker(T) = N (A)

T is called one-to-one if Tu = Tv implies u = v
Basic fact: T is one-to-one if and only if ker(T) = {~0}

Bases, dimension, and rank

A basis for a subspace V is a set of vectors v1, . . . , vn so that (a) they are linearly independent,
and (b) V =span{v1, . . . , vn} .
The idea: a basis allows you to express every vector in the subspace as a linear combination in
exactly one way.

A system of equations Ax = b has a solution iff b ∈col(A) .

If Ax0 = b, then every other solution to Ax = b is x = x0 + z, where z ∈null(A) .

3

The row, column, and nullspaces of a matrix A are therefore useful spaces (they tell us useful
things about solutions to the corresponding linear system), so it is useful to have bases for them.

Finding a basis for the row space.
Basic idea: if B is obtained from A by elementary row operations, then row(A) =row(B).
So of R is the reduced row echelon form of A, row(R) =row(A)
But a basis for row(R) is quick to identify; take all of the non-zero rows of R ! (The zero rows
are clearly redundant.) These rows are linearly independent, since each has a ‘special coordinate’
where, among the rows, only it is non-zero. That coordinate is the pivot in that row. So in any
linear combination of rows, only that vector can contribute something non-zero to that coordinate.
Consequently, in any linear combination, that coordinate is the coefficient of our vector! So, if
the lin comb is ~0, the coefficient of our vector (i.e., of each vector!) is 0.

Put bluntly, to find a basis for row(A), row reduce A, to R; the (transposes of) the non-zero rows
of R form a basis for row(A).

This in turn gives a way to find a basis for col(A), since col(A) =row(AT) !

To find a basis for col(A), take AT , row reduce it to S; the (transposes of) the non-zero rows of S
form a basis for row(AT) =col(A) .

This is probably in fact the most useful basis for col(A), since each basis vector has that special
coordinate. This makes it very quick to decide if, for any given vector b, Ax = b has a solution.
You need to decide if b can be written as a linear combination of your basis vectors; but each
coefficient will be the coordinate of b lying at the special coordinate of each vector. Then just
check to see if that linear combination of your basis vectors adds up to b !

There is another, perhaps less useful, but faster way to build a basis for col(A); row reduce A to
R, locate the pivots in R, and take the columns of A (Note: A, not R !) that correspond to the
columns containing the pivots. These form a (different) basis for col(A).

Why? Imagine building a matrix B out of just the pivot columns. Then in row reduced form there
is a pivot in every column. Solving Bv = ~0 in the case that there are no free variables, we get
v = ~0, so the columns are linearly independent. If we now add a free column to B to get C, we
get the same collection of pivots, so our added column represents a free variable. Then there are
non-trivial solutions to Cv = ~0, so the columns of C are not linearly independent. This means
that the added columns can be expressed as a linear combination of the bound columns. This is
true for all free columns, so the bound columns span col(A).

Finally, there is the nullspace null(A). To find a basis for null(A):

Row reduce A to R, and use each row of R to solve Rx = ~0 by expressing each bound variable in
terms of the frees. collect the coefficients together and write x = xi1v1 + · · · + xik

vk where the xij

are the free variables. Then the vectors v1, . . . , vk form a basis for null(A).

Why? By construction they span null(A); and just as with our row space procedure, each has a
special coordinate where only it is not 0 (the coordinate corresponding to the free variable!).

Rank of a matrix = r(A) = number of non-zero rows in RREF = number of pivots in RREF =
dim(col(A)).
Nullity of a matrix = n(A) = number of columns without a pivot = # columns − # pivots =
dim(null(A))
rank = number of bound variables, nullity = number of free variables
rank ≤ number of rows, number of columns (at most one pivot per row/column!)

Note: since the number of vectors in the bases for row(A) and col(A) is the same as the number of
pivots (= number of nonzero rows in the RREF) = rank of A, we have dim(row(A))=dim(col(A))=r(A).

4

And since the number of vectors in the basis for null(A) is the same as the number of free variables
for A (= the number of columns without a pivot) = nullity of A (hence the name!), we have
dim(null(A)) = n(A) = n − r(A) (where n=number of columns of A).
So, dim(col(A)) + dim(null(A)) = the number of columns of A .
rank + nullity = number of columns = number of variables

More on Bases.

A basis for a subspace W of V is a set of vectors v1, . . . , vn ∈ W so that (a) they are linearly
independent, and (b) W=span{v1, . . . , vn} .
Example: The vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) are a basis for
R

n, the standard basis.

To find a basis: start with a collection of vectors that span, and repeatedly throw out redundant
vectors (so you don’t change the span) until the ones that are left are linearly independent. Note:
each time you throw one out, you need to ask: are the remaining ones lin indep?

Basic fact: If v1, . . . , vn is a basis for V , then every v ∈ V can be expressed as a linear combination
of the vi’s in exactly one way. If v = a1v1 + · · · + anvn, we call the ai the coordinates of v
with respect to the basis v1, . . . , vn . We can then think of v as the vector (a1, . . . an)T = the
coordinates of v with respect to the basis v1, . . . , vn, so we can think of V as “really” being R

n.

The Basis Theorem: Any two bases of the same vector space contain the same number of vectors.
(This common number is called the dimension of V , denoted dim(V) .)
Reason: if v1, . . . , vn is a basis for V and w1, . . . , wk ∈ V are linearly independent, then k ≤ n

As part of that proof, we also learned:
If v1, . . . , vn is a basis for V and w1, . . . , wk are linearly independent, then the spanning set
v1, . . . , vn, w1, . . . , wk for V can be thinned down to a basis for V by throwing away vi’s .

In reverse: we can take any linearly independent set of vectors in V , and add to it from any
basis for V , to produce a new basis for V .

Some consequences:
If dim(V)=n, and W ⊆ V is a subspace of V , then dim(W)≤ n

If dim(V)=n and v1, . . . , vn ∈ V are linearly independent, then they also span V
If dim(V)=n and v1, . . . , vn ∈ V span V , then they are also linearly independent.

Using coordinates, we can treat any vector space as R
k for some k, and so carry out these kinds of

computations - find a basis inside a spanning set, test for linear independence, test for spanning, ex-
tend a linearly independent set to a basis, etc. For example, since the polynomials {1, x, x2, x3, x4}
are a basis for P4, we can test the linear independence of {x + 2, x2 − x− 3, 2x2 + x} (they aren’t)
by testing their coordinate vectors.

5

