
Math 314/814

Topics since the second exam

Note: The final exam covers all three of our topics sheets for the semester.

Application: Markov chains.

In many situations we wish to study a characteristic (or characteristics) of a population, which
changes over time. Often the rule for how the quantities change may be linear; our goal is to
understand what the long term behavior of the situation is.

Initially, the characteristic of the population (think: favorite food, political affiliation, choice of
hair color) is distributed among some collection of values; we represent this initial state as a
vector ~v0 giving the fraction of the whole population which takes each value. (The entries of ~v0

sum to 1.) As time progresses, with each fixed time interval the distribution of the population
changes by multiplication by a transition matrix A, whose (i, j) entry ai,j records what fraction
of the population having the i-th characteristic chooses to switch to the j-th characteristic. Since
every person/object in the population ends up with some characteristic, each column of A (which
describes how the i-th charactersitc gets redistributed) must sum to 1. After the tick of the clock,
the distribution of our initial population, given by ~v0, changes to ~v1 = A~v0. After n ticks of the
clock, the population districution is given by ~vn = An~v0.

The main questions to answer are: does the population distribution stabilize over time? And if
so, what does it stabilize to? A stable distribution ~v is one which is unchanged as time progresses:
A~v = ~v. This can be determined by reinterpreting stability as (A − I)~v = ~0, i.e., ~v lies in the
nullspace of the matrix A − I. Which we can compute! Our solution should also have all entries
non-negative (to reflect that its entries represent parts of a whole) and add up to 1. Moreover, under
very mild assumptions (e.g., no entry of A is 0) every initial state ~v0, under repeated multiplication
by A, will converge to the exact same stable distribution. Which we can compute by the method
above!

Length and inner product.

“Norm” means length! In R
n this is computed as ||x|| = ||(x1, . . . , xn)|| = (x2

1 + · · · + x2
n)1/2

Basic facts: ||x|| ≥ 0, and ||x|| = 0 iff x = ~0,
||cu|| = |c| · ||u||, and ||u + v|| ≤ ||u|| + ||v|| (triangle inequality)

unit vector: the norm of u/||u|| is 1; u/||u|| is the unit vector in the direction of u.

Inner product:
idea: assign a number to a pair of vectors (think: angle between them?)
In R

n, we use the dot product: v = (v1, . . . , vn), w = (w1, . . . , wn)
v • w = 〈v,w〉 = v1w1 + · · · + vnwn = vT w

Basic facts:
〈v, v〉 = ||v||2 (so 〈v, v〉 ≥ 0, and equals 0 iff v = ~0)
〈v,w〉 = 〈w, v〉; 〈cv,w〉 = 〈v, cw〉 = c〈v,w〉 〈v1 + v2, w〉 = 〈v1, w〉 + 〈v2, w〉

Orthogonality.

Two vectors are orthogonal if their angle is π/2, i.e., 〈v,w〉=0. Notation: v ⊥ w. (Also say they
are perpendicular.)

A collection of vectors {v1, . . . , vk} is an orthogonal set if vi ⊥ vj for every i 6= j. If all of the
vectors in an orthogonal set are non-zero, then they are linearly independent.
An orthogonal basis for a subspace W is basis for W that is also an orthogonal set. If we have an
orthogonal basis v1, . . . , vk for W , then determining the coordinates for a vector w ∈ W is quick:
w = Σaivi for ai = 〈w, vi〉/||vi||

2 .

1

A collection of vectors {v1, . . . , vk} is an orthonormal set (we write “o.n. set”) if they are an
orthogonal set and ||vi|| = 1 for every i. An orthonormal basis (o.n. basis) is a basis that is also an
orthonormal set. For an o.n. basis for W , the coordinates of w =∈ W are even shorter: w = Σaivi

for ai = 〈w, vi〉 .

Orthogonal Complements.

This notion of orthogonal vectors can even be used to reinterpret some of our dearly-held results
about systems of linear equations, where all of this stuff began.

Starting with Ax = 0, this can be interpreted as saying that <(every row of A),x >=0, i.e., x is
orthogonal to every row of A. This in turn implies that x is orthogonal to every linear combination
of rows of A, i.e., x is orthogonal to every vector in the row space of A.
This leads us to introduce a new concept: the orthogonal complement of a subspace W in a
vector space V , denoted W⊥, is the collection of vectors v with v ⊥ w for every vector w ∈ W . It
is not hard to see that these vectors form a subspace of V ; the sum of two vectors orthogonal to
w, for example, is orthogonal to w, so the sum of two vectors in W⊥ is also in W⊥ . The same is
true for scalar multiples.

Some basic facts:
For every subspace W , W ∩ W⊥ = {0} (since anything in both is orthogonal to itself, and only
the 0-vector has that property).
Finally, (W⊥)⊥ = W ; this is because W is contained in (W⊥)⊥ (a vector in W is orthogonal to
every vector that is orthogonal to things in W), and the dimensions of the two spaces are the same.

The importance that this has to systems of equations stems from the following facts:
null(A) = row(A)⊥

row(A) = null(A)⊥

col(A) = null(AT)⊥

This provides us with yet another (quicker?) way to decide if a system of equations A~x = ~b is

consistent, or rather, for which ~b is it consistent; ~b must lie in col(A), i.e., in null(AT)⊥. So it must
be ⊥ to a basis for null(AT). So we can compute a basis for null(AT), v1 . . . , vk, and use this to

check for consistency: A~x = ~b is consistent ⇔ 〈~b, vi〉 = 0 for every vi.

And to compute a basis for W⊥: start with a basis for W , writing them as the columns of a matrix
A, so W = col(A), then W⊥ = col(A)⊥ = row(AT)⊥ = null(AT), which we know how to compute
a basis for!

Or even better: start with a basis for W , writing them as the columns of a matrix A. The row
reduce the superaugmented matrix (A|I) → (R|E) with R in REF or RREF. Then the transposes
V1, . . . , vk of the rows of E that stand opposite the all-0 rows of R form a basis for null(AT) = W⊥

! This is because R = EA, so RT = AT ET , which implies that AT vi = ~0 for every i. But E is
invertible, so ET is invertible, so the vi are linearly independent. But! k = thenumber of ~0-rows
of R = (# of rows of R) - (# of non-~0 rows of R = (# rows of A) - (row rank of A) =(# columns
of AT) - (rank of AT) = nullity of AT , so v1, . . . vk are in null(AT), are linearly independent, and
there are as many of them as there is for a basis for null(AT), so they form a basis for null(AT) !

Orthogonal Projections.

Any vector v ∈ V can be written, uniquely, as v = w + w⊥, for w ∈ W and w⊥ ∈ W⊥ ; the
uniqueness comes from the result above about intersections. That it can be written that way at
all comes from orthogonal projections.
We’ve seen that if w1, . . . , wk is an orthogonal basis for a subspace W of R

n, and w ∈ W , then w

=
< w1, w >

< w1, w1 >
w1 + . . . +

< wk, w >

< wk−1, wk >
wk

2

On the other hand, if v ∈ V , we can define the orthogonal projection

projW (v) =
< w1, v >

< w1, w1 >
w1 + . . . +

< wk, v >

< wk, wk >
wk

of v into W . This vector is in W , and we can show that v − projW (v) is orthogonal to all of the
wi, so it is orthogonal to every linear combination, i.e., it is orthogonal to every vector in W . So
v − projW (v) = w′ ∈ W⊥

In the case that the wi are not just orthogonal but also orthnormal, we can simplify this somewhat:
projW (v) = < w1, v > w1 + · · ·+ < wn, v > wn = (w1w

T
1 + · · · + wnwT

n)v = Pv ,
where P = (w1w

T
1 + · · · + wnwT

n) is the projection matrix giving us orthogonal projection.

For any subspace W ⊆ R
n, dim(W)+dim(W⊥) = n = dim(Rn) . Even more, a basis for W and a

basis for W⊥ together form a basis for R
n.

All that we need now is a method for building orthogonal bases for subspaces! (See also the
formulation for the orthogonal projection which requires only a basis for W , later in these notes.)

Gram-Schmidt Orthogonalization.

Given a basis v1, . . . , vn for a subspace W , we can build an orthogonal basis for W by, essentially,
repeatedly subtracting from wi its orthogonal projection onto the span of the orthogonal vectors
we have built up to that point.
To do so we repeatedly use the formula

(*) projWi
(v) =

< w1, v >

< w1, w1 >
w1 + . . . +

< wi, v >

< wi, wi >
wi

for the projection of a vectors onto the span Wi of a collection of orthogonal vectors. Gram-Schmidt
orthogonalization consists of repeatedly using this formula to replace a collection of vectors with
ones that are orthogonal to one another, without changing their span. Starting with a collection
{v1, . . . , vn} of vectors in V ,

let w1 = v1, then let w2 = v2 −
< w1, v2 >

< w1, w1 >
w1 .

Then w1 and w2 are orthogonal, and since w2 is a linear combination of w1 = v1 and v2, while the
above equation can also be rewritten to give v2 as a linaear combination of w1 and w2, the span is
unchanged. Continuing,

let w3 = v3 −
< w1, v3 >

< w1, w1 >
w1 −

< w2, v3 >

< w2, w2 >
w2 ; then since w1 and w2 are orthogonal, it is not

hard to check that w3 is orthogonal to both of them, and using the same argument, the span is
unchanged (in this case, span{w1, w2, w3} =span{w1, w2, v3}=span{v1, v2, v3}).

Continuing this, we let wk = vk −
< w1, vk >

< w1, w1 >
w1 − . . . −

< wk−1, vk >

< wk−1, wk−1 >
wk−1

Doing this all the way to n will replace v1, . . . , vn with orthogonal vectors w1, . . . , wn, without
changing the span.

One thing worth noting is that the if two vectors are orthogonal, then any scalar multiples of them
are, too. This means that if the coordinates of one of our wk are not to our satisfaction (having an
ugly denomenator, perhaps), we can scale it to change the coordinates to something more pleasant.
It is interesting to note that in so doing, the the later vectors wk are unchanged, since our scalar,
can be pulled out of both the top inner product and the bottom one in later calculations, and
cancelled.

Once we know how to build an orthogonal basis for a subspace W , we know how to compute the
orthogonal projection of a vector onto W ; we use the formula (*) above. This in turn allows to
compute the decomposition of any vector ~v ∈ R

n as ~v = ~w + ~w′ with ~w ∈ W and ~w′ ∈ W⊥;
~w = projW (~v) and ~w′ = ~v − ~w.

3

This in turn gives us the tools to establish some basic facts:

(W⊥)⊥ = W , since if ~w ∈ W , then ~w ⊥ ~v for every ~v ∈ W⊥, so w ∈ (W⊥)⊥, while if ~v ∈ (W⊥)⊥,
then writing ~v = ~w+ ~w′ as above, we have ~v− ~w ∈ (W⊥)⊥, so 0 =< ~v− ~w, ~w′ >=< ~v− ~w,~v− ~w >=
||~v − ~w||2, so ~v − ~w = ~0, so ~v = ~w ∈ W .

If W ⊆ R
n is a subspace, then dim(W)+dim(W⊥) = n; this is because we can express W = col(A)

for some matrix A (having columns a spanning set for W), and then W⊥ = null(AT), so
dim(W)+dim(W⊥) = rank(A)+nullity(AT) = rowrank(A)+nullity(AT) = rank(AT)+nullity(AT) =(#
of pivots for AT) + (# free variables for AT) =# of columns of AT = # of rows of A = n.

Even more, any basis for W , together with a basis for W⊥, forms a basis for R
n. This is becuse

such a collection of vectors will form n vectors in R
n and will be linearly independent. This is

because if we express ~0 as a linear combination of them, we can rearrange terms so that a linear
combination of the W -vectors equals a linear combination of the W⊥-vectors. This vector lies in
W ∩ W⊥ = {~0}, so since each basis is linearly independent, both sets of coefficients are 0.

Best approximations.

In the real world, the coefficients and target vector of a system of linear equations are only known
up to some (measurement) error. But if the rank of the matrix is too small (e.g., we have more
variables than equations), small changes in values can easily lead to an inconsistent system. In

other words, our target, ~b might end up lying close to, but not in, the column space col(A), of our

coefficient matrix. The appropriate solution, then, is to find the value of A~x, closest to ~b, and treat
~x as our “solution” to the inconsisent system A~x = ~b.

How? Minimize ||A~x −~b||2, i.e., minimize ~w −~b for ~w ∈ col(A). If we use an orthonormal basis

{~w1, . . . , ~wk} for col(A), then < (Σxi ~wi) −~b, (Σxi ~wi) −~b >=< ~b,~b > +Σ(x2
i − 2xi < ~wi,~b >) is

minimized when (the gradient of this function of the xi is 0, i.e.) xi =< ~wi,~b > for each i, so the

vector ~w closest to ~b is Σ < ~wi,~b > ~wi = projcol(A)(~b), i.e., the orthogonal projection of ~b to the
column space of A.

But! we don’t need to build an orthogonal basis for col(A) in order to compute this; ~w =

projcol(A)(~b) is the (unique) vector ~w ∈ col(A) such that ~w − ~b ∈ (col(A))⊥ = null(AT), so we

need to find ~w = A~x so that AT (A~x −~b) = ~0, i.e., (AT A)~x = AT~b.

This linear system is consistent (we know that the needed A~x exists); solving the system for ~x

gives us the vector A~x = projcol(A)(~b), and so gives us a method for computing the orthogonal
projection onto any subspace (that we have a spanning set for), without needing to compute an

orthogonal basis for it first. A~x = ~w is also the closest vector to ~b for which A~x = ~w is consistent;
~x is called the least squares solution to the inconsistent system A~x = ~b.

Note: if AT A is invertible (need: r(A)=number of columnsof A), then we can write ~x = (AT A)−1(AT~b);

A~x = A(AT A)−1(AT~b). The gives us a general formula for the orthogonal projection onto a sub-
space W ; projW (v) = A(AT A)−1(AT~v), where the columns of A form a basis for W .

Regression Lines.

We can apply this technology to produce a method for finding the “best fit” line to a collection
of data. Suppose we have a collection (x1, y1), . . . , (xn, yn) of data points, and we wish to find
the line L(x) = y = ax + b that best fits the data. Typically, this means that we want, on
average, that the deviation between yi and L(xi) to be as small as possible. In practice, what
we minimize is the distance between the “value vector”, [y1, . . . , yn]T and the “predicted vector”
[ax1 + b, . . . , axn + b]T . Our unknowns are a, b, and our predicted vector can be expressed as a
matrix product,

4

ax1 + b
...

axn + b

 =

x1 1
...

...
xn 1

[

a
b

]

= A

[

a
b

]

=

y1
...

yn

= ~y

So we want the vector [a, b]T so that A[a, b]T is closest to ~y. But this is precisely the situation we
just worked through; the slope (a) and intercept (b) of the best-fitting line are the solution to the
system

AT A

[

a
b

]

= AT ~y, which works out to

[

Σx2
i Σxi

Σxi n

] [

a
b

]

=

[

Σxiyi

Σyi

]

(although we need not re-

member that....). The 2× 2 matrix AT A is invertible, unless all of the xi are equal to one another.

We can do this sort of thing more generally, too. We can find the best-fitting quadratic Q(x) =
y = ax2 + bx + c, or cubic C(x) = y = ax3 + bx2 + cx + d, or any polynomial, using the same basic
approach. Let’s illustrate this with a quadratic. As with linear regression, we wish to make the
sum of the terms [yi − (ax2

i + bxi + c)]2 as small as possible, which means that we wish to make

A

a
b
c

 as close to

y1
...

yn

= ~y as we can, where now

A =

x2
1 x1 1
...

...
x2

n xn 1

. This, again, has solution

a
b
c

 = (AT A)−1AT ~y. AT A is invertible so long

as at least three of the xi are distinct. This last fact follows from a fact about the Vandermonde
determinant, which is the determinant of the matrix

xn−1
1 . . . x1 1
...

...
xn−1

n . . . xn 1

,

and which equals the product of all of the differences xi−xj taken over pairs i < j. The determinant
is therefore non-zero if all of the xi are distinct, which means that the last k + 1 columns (which
are what we use for a degree k polynomial fitting) are linearly independent if at least k + 1 of the
xi are distinct.

Eigenvalues and eigenvectors.

For A an n×n matrix, v is an eigenvector (e-vector, for short) for A if v 6= 0 and Av = λv for some
(real or complex, depending on the context) number λ. λ is called the associated eigenvalue for A.
A matrix which has an eigenvector has lots of them; if v is an eigenvector, then so is 2v, 3v, etc.
On the other hand, a matrix does not have lots of eigenvalues:

If λ is an e-value for A, then (λI − A)v=0 for some non-zero vector v. So null(λI − A) 6= {0}, so
det(λI −A) = 0. But det(tI −A) = χA(t), thought of as a function of t, is a polynomial of degree
n, so has at most n roots. So A has at most n different eigenvalues.
χA(t) = det(tI − A) is called the characteristic polynomial of A.
null(λI −A) = Eλ(A) is (ignoring 0) the collection of all e-vectors for A with e-value λ. it is called
the eigenspace (or e-space) for A corresponding to λ. An eigensystem for a (square) matrix A is a
list of all of its e-values, along with their corresponding e-spaces.

One somewhat simple case: if A is (upper or lower) triangular, then the e-values for A are exactly
the diagonal entries of A, since tI − A is also triangular, so its determinant is the product of its
diaginal entries.

5

We call dim(null(λI − A)) the geometric multiplicity of λ, and the number of times λ is a root of
χA(t) (= number of times (t − λ) is a factor) = m(λ) = the algebraic multiplicity of λ .
Some basic facts:
The number of real eigenvalues for an n × n matrix is ≤ n .
counting multiplicity and complex roots the number of eigenvalues =n .
For every e-value λ, 1≤ the geometric multiplicity ≤ m(λ).
(non-zero) e-vectors having all different e-values are linearly independent.

Similarity and diagonalization.

The basic idea: to understand a Markov chain xn = Anx0, you need to compute large powers of
A. This can be hard! There ought to be an easier way. Eigenvalues (or rather, eigenvectors) can
help (if you have enough of them).

The matrix A =

(

3 2
3 4

)

has e-values 1 and 6 (Check!) with corresponding e-vectors (1,−1) and

(2,3) . This then means that
(

3 2
3 4

) (

1 2
−1 3

)

=

(

1 2
−1 3

)(

1 0
0 6

)

, which we write AP = PD ,

where P is the matrix whose colummns are our e-vectors, and D is a diagonal matrix. Written
slightly differently, this says A = PDP−1 .

We say two matrices A and B are similar if there is an invertible matrix P so that AP = PB .
(Equivalently, P−1AP = B, or A = PBP−1.) A matrix A is diagonalizable if it is similar to a
diagonal matrix.

We write A ∼ B is A is similar to B, i.e., P−1AP = B. We can check:
A ∼ A ; if A ∼ B then B ∼ A ; if A ∼ B and B ∼ C, then A ∼ C . (We sat that “∼” is an
equivalence relation.)

Why do we care about similarity? We can check that if A = PBP−1, then An = PBnP−1 . If Bn

is quick to calculate (e.g., if B is diagonal; Bn is then also diagonal, and its diagonal entries are
the powers of B’s diagonal entries), this means An is also fairly quick to calculate!

Also, if A and B are similar, then they have the same characteristic polynomial, so they have
the same eigenvalues. They do, however, have different eigenvectors; in fact, if AP = PB and
Bv = λv, then A(Pv) = λ(Pv), i.e., the e-vectors of A are P times the e-vectors of B . Similar
matrices also have the same determinant, rank, and nullity.

These facts in turn tell us when a matrix can be diagonalized. Since for a diagonal matrix D, each
of the standard basis vectors ei is an e-vector, Rn has a basis consisting of e-vectors for D. If A is
similar to D, via P , then each of Pei = ith column of P is an e-vector. But since P is invertible, its
columns form a basis for Rn, as well. SO there is a basis consisting of e-vectors of A. On the other
hand, such a basis guarantees that A is diagonalizable (just run the above argument in reverse...),
so we find that:

(The Diagonalization Theorem) An n×n matrix A is diagonalizable if and only if there is basis of
Rn consisting of eigenvectors of A.

And one way to guarantee that such a basis exists: If A is n × n and has n distinct eigenvalues,
then choosing an e-vector for each will always yield a linear independent coillection of vectors (so,
since there are n of them, you get a basis for Rn). So:

If A is n × n and has n distinct (real) eigenvalues, A is diagonalizable. In fact, the dimensions of
all of the eigenspaces for A (for real eigenvalues λ) add up to n if and only if A is diagonalizable.

6

