Math 314: Things we know how to do

Solve a system of equations $A\vec{x} = \vec{b}$ using row reduction/Gaussian elimination.

- Show that a linear system has no solutions, one solution, many solutions (check for consistency, count free variables).
- Show that a collection of vectors in \mathbb{R}^n span \mathbb{R}^n (pivot in every row), show they are linearly independent (no free variables).
- Balance a chemical equation.
- Compute the net flow through a network, by monitoring (i.e., knowing the value at) some of the edges.
- Compute the matrix for a linear transformation; compute the image of a vector under a transformation.
- Compute the inverse of a matrix A (using a super-augmented matrix).
- Write an (invertible) matrix as a product of elementary matrices (by keeping track of the row operations in reducing it to the identity matrix).
- Compute the solution to a system of equations $A\vec{x} = \vec{b}$ with A invertible (by inverting!).
- Compute the determinant of a matrix (by row reduction, or by expanding along row/column).
- Determine if a collection of vectors form a vector space/subspace (check closure under addition, scalar multiplication).
- Interpret linear systems in terms of column spaces and nullspaces (column = who has solutions, null = how many).
- Express a column space as a nullspace (of another matrix), and the same in reverse.
- Find bases for column space, row space, nullspace (row reduce!).
- Compute the rank and nullity of a matrix.
- Start with linearly independent vectors in a subpace, extend to a basis (add a basis at the end, then row reduce, keep the columns corresponding to pivots).
- Start with a spanning set for a subspace, choose a basis (row reduce, keep columns corresponding to pivots).
- Find the coordinates of a vector with respect to a basis.
- Compute the transition matrix of a Markov chain; find the steady state solution for the modeled system (via eignvector/eigenvalue).
- Build a basis for the orthogonal complement of a subspace (described as span? $(col(A))^{\perp} = null(A^T)$. described as nullspace? $(null(A))^{\perp} = row(A)$.)
- Use $(col(A))^{\perp} = null(A^T)$ to build a test for consistency of a system $A\vec{x} = \vec{b}$ (\vec{b} must be \perp every vector in a basis for $null(A^T)$).
- Build an orthogonal (orthonormal) basis for a subspace (start with a basis, and apply Gram-Schmidt).
- Compute the orthogonal projection of a vector to a subspace (build an orthogonal basis, and sum the projections onto each basis vector [or see below!]).

Decompose a vector \vec{v} into the sum of a vector $\vec{w} \in W$ and $\vec{w}' \in W^{\perp}$.

- Find the vector in col(A) closest to \vec{b} , i.e., find \vec{x} so that $||A\vec{x} \vec{b}||$ is as small as possible (solve $A^T A \vec{x} = A^T \vec{b}$, take $A\vec{x}$). [This is the same as taking the orthogonal projection of \vec{b} onto col(A).]
- Find the line which best fits a collection of data points.
- Find a degree k polynomial whose graph best fits a collection of data points.
- Compute the characteristic polynomial of a matrix.
- Compute the eigenvalues and bases of eigenspaces for a matrix.
- Diagnonalize a matrix, or show that it cannot be done (geometric vs. algebraic multiplicity). Use diagonalization to compute "high" powers of a matrix.
- Show two matrices *aren't* similar (by showing they have different eigenvalues, or characteristic polynomials, or geometric multiplicities).