
Math 314/814

Things we know how to do

Solve a system of equations A~x = ~b using Gaussian elimination.

Show that a linear system has no solutions, one solution, many solutions (check for con-
sistency, count free variables).

Compute the rank and nullity of a matrix.

Show that a collection of vectors in R
n span R

n (pivot in every row), show they are linearly
independent (no free variables).

Compute the net flow through a network, by monitoring (i.e., knowing the value at) some
of the edges.

Write an (invertible) matrix as a product of elementary matrices (by keeping track of the
row operations in reducing it to the identity matrix).

Compute the inverse of a matrix A (using a super-augmented matrix).

Determine if a collection of vectors form a subspace (check closure under addition, scalar
multiplication).

Interpret linear systems in terms of column and nullspaces (column = who has solutions,
null = how many).

Find bases for column space, row space, nullspace (row reduce!).

Start with linearly independent vectors in a subpace, extend to a basis (add a basis at the
end, then row reduce, keep the columns corresponding to pivots).

Start with a spanning set for a subspace, choose a basis (row reduce, keep columns corre-
sponding to pivots).

Compute the matrix for a linear transformation; compute the image of a vector under a
transformation.

Compute the determinant of a matrix (by row reduction, by expanding along row/column).

Compute the solution to a system of equations A~x = ~b with A invertible (by inverting! or
Cramer’s rule).

Compute the characteristic polynomial of a matrix.

Compute the eigenvalues and bases for eigenspaces for a matrix.

Diagnonalize a matrix, or show that it cannot be done (geometric vs. algebraic multiplic-
ity). Use diagonalization to compute “high” powers of a matrix.

Show two matrices aren’t similar (by showing they have different eigenvalues, or charac-
teristic polynomials, or geometric multiplicities).

Build a basis for the orthogonal complement of a subspace (described as span? (col(A))⊥ =
null(AT ). described as nullspace? (null(A))⊥ = row(A).)



Use (col(A))⊥ = null(AT ) to build a test for consistency of a system A~x = ~b (~b must be ⊥

a basis for null(AT )).

Build an orthogonal (orthonormal) basis for a subspace (start with a basis, and apply
Gram-Schmidt).

Compute the orthogonal projection of a vector to a subspace (build an orthogonal basis,
and sum the projections onto each basis vector [or see below!]).

Decompose a vector ~v into the sum of a vector ~w ∈ W and ~w′
∈ W⊥.

Find the vector in col(A) closest to ~b (solve A
T
A~x = A

T~b, take A~x). [This is the same as

taking the orthogonal projection of ~b onto col(A).]

Note! If we choose a basis for col(A) and assemble them into a matrix (which we will

still call A), then A
T
A is invertible. So A

T
A~x = A

T~b has solution ~x = (AT
A)−1

A
T~b, so

A~x = A(AT A)−1AT~b. So A(AT A)−1AT is the matrix for the ⊥ projection onto col(A),
when A has a pivot in every column.

Find the line which best fits a collection of data points.

Orthogonally diagonalize a symmetric matrix!


