
Math 314/814 Section 5

Topics for second exam

Technically, everything covered by the first exam plus

More on Bases.

A basis for a subspace V of R
k is a set of vectors v1, . . . , vn so that (a) they are linearly indepen-

dent, and (b) V =span{v1, . . . , vn} .
Example: The vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) are a basis for
R

n, the standard basis.

To find a basis: start with a collection of vectors that span, and repeatedly throw out redundant
vectors (so you don’t change the span) until the ones that are left are linearly independent. Note:
each time you throw one out, you need to ask: are the remaining ones lin indep?

Basic fact: If v1, . . . , vn is a basis for V , then every v ∈ V can be expressed as a linear combination
of the vi’s in exactly one way. If v = a1v1 + · · · + anvn, we call the ai the coordinates of v
with respect to the basis v1, . . . , vn . We can then think of v as the vector (a1, . . . an)T = the
coordinates of v with respect to the basis v1, . . . , vn, so we can think of V as “really” being R

n.

The Basis Theorem: Any two bases of the same vector space contain the same number of vectors.
(This common number is called the dimension of V , denoted dim(V ) .)
Reason: if v1, . . . , vn is a basis for V and w1, . . . , wk ∈ V are linearly independent, then k ≤ n

As part of that proof, we also learned:
If v1, . . . , vn is a basis for V and w1, . . . , wk are linearly independent, then the spanning set
v1, . . . , vn, w1, . . . , wk for V can be thinned down to a basis for V by throwing away vi’s .

In reverse: we can take any linearly independent set of vectors in V , and add to it from any
basis for V , to produce a new basis for V .

Some consequences:
If dim(V )=n, and W ⊆ V is a subspace of V , then dim(W )≤ n

If dim(V )=n and v1, . . . , vn ∈ V are linearly independent, then they also span V
If dim(V )=n and v1, . . . , vn ∈ V span V , then they are also linearly independent.

Linear Transformations.

T : R
n → R

m is a linear transformation if T (cu + dv) = cT (u) + dT (v) for all c, d ∈ R, u, v ∈ R
n.

This can be verified in two steps: check T (cu) = cT (u) for all c ∈ R and u ∈ R
n, and T (u + v) =

T (u) + T (v) for all u, v ∈ R
n.

Example: TA : R
n → R

m, TA(v) = Av, is linear
T : {functions defined on [a, b]} → R, T (f) = f(b), is linear

T : R
2 → R, T (x, y) = x − xy + 3y is not linear!

Basic fact: every linear transf T : R
n → R

m is T = TA for some matrix A: A = the matrix with
i-th column T (ei), ei = the i-th coordinate vector in R

n.

Using the idea of coordinates for a subspace, we can extend these notions to linear transformations
T : V → W ; thinking of vectors as their coordinates, each T is “really” TA for some matrix A.

The composition of two linear transformations is linear; in fact TA ◦ TB = TAB . So matrix
multiplication is really function composition!
If A is invertible, then TA is an invertible function, with inverse T−1

A = TA−1 .

1



Chapter 4: Eigenvalues, eigenvectors, and determinants

Determinants.

(Square) matrices come in two flavors: invertible (all Ax = b have a solution) and non-invertible
(Ax = ~0 has a non-trivial solution). It is an amazing fact that one number identifies this difference;
the determinant of A.

For 2×2 matrices A =

(

a b
c d

)

, this number is det(A)=ad− bc; if 6= 0, A is invertible, if =0, A is

non-invertible (=singular).
For larger matrices, there is a similar (but more complicated formula):
A= n × n matrix, Mij(A) = matrix obtained by removing ith row and jth column of A.
det(A) = Σn

i=1(−1)i+1ai1det(Mi1(A))
(this is called expanding along the first column)

Amazing properties:
If A is upper triangular, then det(A) = product of the entries on the diagonal
If you multiply a row of A by c to get B, then det(B) = cdet(A)
If you add a mult of one row of A to another to get B, then det(B) = det(A)
If you switch a pair of rows of A to get B, then det(B) = −det(A)

In other words, we can understand exactly how each elementary row operation affects the deter-
minant. In part, A is invertible iff det(A) 6= 0.

In fact, we can use row operations to calculate det(A) (since the RREF of a matrix is upper
triangular). We just need to keep track of the row operations we perform, and compensate for the
changes in the determinant;
det(A) = (1/c)det(Ei(c)A) , det(A) = (−1)det(EijA)

More interesting facts:
det(AB) = det(A)det(B) ; det(AT ) = det(A) ; det(A−1) = [det(A)]−1

We can expand along other columns than the first: for any fixed value of j (= column),
det(A) = Σn

i=1(−1)i+jaijdet(Mij(A))
(expanding along jth column)
And since det(AT ) = det(A), we could expand along rows, as well.... for any fixed i (= row),
det(A) = Σn

j=1(−1)i+jaijdet(Mij(A))

A formula for the inverse of a matrix:
If we define Ac to be the matrix whose (i, j)th entry is (−1)i+jdet(Mij(A)), then AT

c A = (detA)I
(AT

c is called the adjoint of A). So if det(A) 6= 0, then we can write the inverse of A as

A−1 =
1

det(A)
AT

c (This is very handy for 2×2 matrices...)

The same approach allows us to write an explicit formula for the solution to Ax = b, when A is
invertible:
If we write Bi = A with its ith column replaced by b, then the (unique) solution to Ax = b has ith
coordinate equal to

det(Bi)

det(A)

Eigenvectors and Eigenvalues.

For A an n×n matrix, v is an eigenvector (e-vector, for short) for A if v 6= 0 and Av = λv for some
(real or complex, depending on the context) number λ. λ is called the associated eigenvalue for A.
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A matrix which has an eigenvector has lots of them; if v is an eigenvector, then so is 2v, 3v, etc.
On the other hand, a matrix does not have lots of eigenvalues:

If λ is an e-value for A, then (λI − A)v=0 for some non-zero vector v. So null(λI − A) 6= {0}, so
det(λI −A) = 0. But det(tI −A) = χA(t), thought of as a function of t, is a polynomial of degree
n, so has at most n roots. So A has at most n different eigenvalues.
χA(t) = det(tI − A) is called the characteristic polynomial of A.
null(λI −A) = Eλ(A) is (ignoring 0) the collection of all e-vectors for A with e-value λ. it is called
the eigenspace (or e-space) for A corresponding to λ. An eigensystem for a (square) matrix A is a
list of all of its e-values, along with their corresponding e-spaces.

One somewhat simple case: if A is (upper or lower) triangular, then the e-values for A are exactly
the diagonal entries of A, since tI − A is also triangular, so its determinant is the product of its
diaginal entries.
We call dim(null(λI − A)) the geometric multiplicity of λ, and the number of times λ is a root of
χA(t) (= number of times (t − λ) is a factor) = m(λ) = the algebraic multiplicity of λ .
Some basic facts:
The number of real eigenvalues for an n × n matrix is ≤ n .
counting multiplicity and complex roots the number of eigenvalues =n .
For every e-value λ, 1≤ the geometric multiplicity ≤ m(λ).
(non-zero) e-vectors having all different e-values are linearly independent.

Similarity and diagonalization
The basic idea: to understand a Markov chain xn = Anx0, you need to compute large powers of
A. This can be hard! There ought to be an easier way. Eigenvalues (or rather, eigenvectors) can
help (if you have enough of them).

The matrix A =

(

3 2
3 4

)

has e-values 1 and 6 (Check!) with corresponding e-vectors (1,−1) and

(2,3) . This then means that
(

3 2
3 4

) (

1 2
−1 3

)

=

(

1 2
−1 3

)(

1 0
0 6

)

, which we write AP = PD ,

where P is the matrix whose colummns are our e-vectors, and D is a diagonal matrix. Written
slightly differently, this says A = PDP−1 .

We say two matrices A and B are similar if there is an invertible matrix P so that AP = PB .
(Equivalently, P−1AP = B, or A = PBP−1.) A matrix A is diagonalizable if it is similar to a
diagonal matrix.

We write A ∼ B is A is similar to B, i.e., P−1AP = B. We can check:
A ∼ A ; if A ∼ B then B ∼ A ; if A ∼ B and B ∼ C, then A ∼ C . (We sat that “∼” is an
equivalence relation.)

Why do we care about similarity? We can check that if A = PBP−1, then An = PBnP−1 . If Bn

is quick to calculate (e.g., if B is diagonal; Bn is then also diagonal, and its diagonal entries are
the powers of B’s diagonal entries), this means An is also fairly quick to calculate!

Also, if A and B are similar, then they have the same characteristic polynomial, so they have
the same eigenvalues. They do, however, have different eigenvectors; in fact, if AP = PB and
Bv = λv, then A(Pv) = λ(Pv), i.e., the e-vectors of A are P times the e-vectors of B . Similar
matrices also have the same determinant, rank, and nullity.

These facts in turn tell us when a matrix can be diagonalized. Since for a diagonal matrix D, each
of the standard basis vectors ei is an e-vector, Rn has a basis consisting of e-vectors for D. If A is
similar to D, via P , then each of Pei = ith column of P is an e-vector. But since P is invertible, its
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columns form a basis for Rn, as well. SO there is a basis consisting of e-vectors of A. On the other
hand, such a basis guarantees that A is diagonalizable (just run the above argument in reverse...),
so we find that:

(The Diagonalization Theorem) An n×n matrix A is diagonalizable if and only if there is basis of
Rn consisting of eigenvectors of A.

And one way to guarantee that such a basis exists: If A is n × n and has n distinct eigenvalues,
then choosing an e-vector for each will always yield a linear independent coillection of vectors (so,
since there are n of them, you get a basis for Rn). So:

If A is n × n and has n distinct (real) eigenvalues, A is diagonalizable. In fact, the dimensions of
all of the eigenspaces for A (for real eigenvalues λ) add up to n if and only if A is diagonalizable.

Chapter 5: Orthogonality.

Length and inner product.

“Norm” means length! In R
n this is computed as ||x|| = ||(x1, . . . , xn)|| = (x2

1 + · · · + x2
n)1/2

Basic facts: ||x|| ≥ 0, and ||x|| = 0 iff x = ~0,
||cu|| = |c| · ||u||, and ||u + v|| ≤ ||u|| + ||v|| (triangle inequality)

unit vector: the norm of u/||u|| is 1; u/||u|| is the unit vector in the direction of u.

Inner product:
idea: assign a number to a pair of vectors (think: angle between them?)
In R

n, we use the dot product: v = (v1, . . . , vn), w = (w1, . . . , wn)
v • w = 〈v,w〉 = v1w1 + · · · + vnwn = vT w

Basic facts:
〈v, v〉 = ||v||2 (so 〈v, v〉 ≥ 0, and equals 0 iff v = ~0)
〈v,w〉 = 〈w, v〉; 〈cv,w〉 = 〈v, cw〉 = c〈v,w〉 〈v1 + v2, w〉 = 〈v1, w〉 + 〈v2, w〉

Orthogonality.

Two vectors are orthogonal if their angle is π/2, i.e., 〈v,w〉=0. Notation: v ⊥ w. (Also say they
are perpendicular.)

A collection of vectors {v1, . . . , vk} is an orthogonal set if vi ⊥ vj for every i 6= j. If all of the
vectors in an orthogonal set are non-zero, then they are linearly independent.
An orthogonal basis for a subspace W is basis for W that is also an orthogonal set. If we have an
orthogonal basis v1, . . . , vk for W , then determining the coordinates for a vector w ∈ W is quick:
w = Σaivi for ai = 〈w, vi〉/||vi||

2 .

A collection of vectors {v1, . . . , vk} is an orthonormal set (we write “o.n. set”) if they are an
orthogonal set and ||vi|| = 1 for every i. An orthonormal basis (o.n. basis) is a basis that is also an
orthonormal set. For an o.n. basis for W , the coordinates of w =∈ W are even shorter: w = Σaivi

for ai = 〈w, vi〉 .

Orthogonal Matrices.

We’ve seen that having a basis consisting of orthonormal vectors can simplify some of our previous
calculations. Now we’ll see where some of them come from.
An n × n matrix Q is called orthogonal if it’s columns form an orthonormal basis for Rn. This
means <(ith column of Q),(jth column of Q¿ = 1 if i = j, and is 0 otherwise . This in turn means
that QT Q = I, which in turn means QT = Q−1 ! So an orthogonal matrix is one whose inverse is
equal to its own transpose.

Basic facts about an orthogonal matrix Q :
Q is orthogonal ⇔ for every v,w ∈ Rn, < Qv,Qw > = < v,w > .
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Q is orthogonal ⇔ for every v ∈ Rn, ||Qv|| = ||v|| .
If Q is orthogonal, then QT is orthogonal. So the rows of Q form an o.n. basis!
If Q is orthogonal, then Q−1 is orthogonal.
If Q is orthogonal, then det(Q) = ±1.

Orthogonal Complements.

This notion of orthogonal vectors can even be used to reinterpret some of our dearly-held results
about systems of linear equations, where all of this stuff began.

Starting with Ax = 0, this can be interpreted as saying that <(every row of A),x >=0, i.e., x is
orthogonal to every row of A. This in turn implies that x is orthogonal to every linear combination
of rows of A, i.e., x is orthogonal to every vector in the row space of A.
This leads us to introduce a new concept: the orthogonal complement of a subspace W in a
vector space V , denoted W⊥, is the collection of vectors v with v ⊥ w for every vector w ∈ W . It
is not hard to see that these vectors form a subspace of V ; the sum of two vectors orthogonal to
w, for example, is orthogonal to w, so the sum of two vectors in W⊥ is also in W⊥ . The same is
true for scalar multiples.

Some basic facts:
For every subspace W , W ∩ W⊥ = {0} (since anything in both is orthogonal to itself, and only
the 0-vector has that property).
Finally, (W⊥)⊥ = W ; this is because W is contained in (W⊥)⊥ (a vector in W is orthogonal to
every vector that is orthogonal to things in W ), and the dimensions of the two spaces are the same.

The importance that this has to systems of equations stems from the following facts:
null(A) = row(A)⊥

row(A) = null(A)⊥

col(A) = null(AT )⊥

This provides us with yet another (quicker?) way to decide if a system of equations A~x = ~b is

consistent, or rather, for which ~b is it consistent; ~b must lie in col(A), i.e., in null(AT )⊥. So it must
be ⊥ to a basis for null(AT ). So we can compute a basis for null(AT ), v1 . . . , vk, and use this to

check for consistency: A~x = ~b is consistent ⇔ 〈~b, vi〉 = 0 for every vi.

And to compute a basis for W⊥: start with a basis for W , writing them as the columns of a matrix
A, so W = col(A), then W⊥ = col(A)⊥ = row(AT )⊥ = null(AT ), which we know how to compute
a basis for!

Orthogonal Projections.

Any vector v ∈ V can be written, uniquely, as v = w + w⊥, for w ∈ W and w⊥ ∈ W⊥ ; the
uniqueness comes from the result above about intersections. That it can be written that way at
all comes from orthogonal projections.
We’ve seen that if w1, . . . , wk is an orthogonal basis for a subspace W of R

n, and w ∈ W , then w

=
< w1, w >

< w1, w1 >
w1 + . . . +

< wk, w >

< wk−1, wk >
wk

On the other hand, if v ∈ V , we can define the orthogonal projection

projW (v) =
< w1, v >

< w1, w1 >
w1 + . . . +

< wk, v >

< wk, wk >
wk

of v into W . This vector is in W , and we can show that v − projW (v) is orthogonal to all of the
wi, so it is orthogonal to every linear combination, i.e., it is orthogonal to every vector in W . So
v − projW (v) = w′ ∈ W⊥

In the case that the wi are not just orthogonal but also orthnormal, we can simplify this somewhat:
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projW (v) = < w1, v > w1 + · · ·+ < wn, v > wn = (w1w
T
1 + · · · + wnwT

n )v = Pv ,
where P = (w1w

T
1 + · · · + wnwT

n ) is the projection matrix giving us orthogonal projection.

For any subspace W ⊆ R
n, dim(W )+dim(W⊥) = n = dim(Rn) . Even more, a basis for W and a

basis for W⊥ together form a basis for R
n.

All that we need now is a method for building orthogonal bases for subspaces!

Gram-Schmidt Orthogonalization.

We’ve seen how a basis consisting of vectors orthogonal to one another can prove useful; this section
is about how to build such a basis.
The starting point is our old formula for the projection of one vector onto another; If W = span{w},
then orthogonal projection onto W is given by
< w, v >

< w,w >
w, so v −

< w, v >

< w,w >
w is perpendicular to w.

Gram-Schmidt orthogonalization consists of repeatedly using this formula to replace a collection
of vectors with ones that are orthogonal to one another, without changing their span. Starting
with a collection {v1, . . . , vn} of vectors in V ,

let w1 = v1, then let w2 = v2 −
<w1,v2>
<w1,w1>

w1 .
Then w1 and w2 are orthogonal, and since w2 is a linear combination of w1 = v1 and v2, while the
above equation can also be rewritten to give v2 as a linaear combination of w1 and w2, the span is
unchanged. Continuing,

let w3 = v3 −
< w1, v3 >

< w1, w1 >
w1 −

< w2, v3 >

< w2, w2 >
w2 ; then since w1 and w2 are orthogonal, it is not

hard to check that w3 is orthogonal to both of them, and using the same argument, the span is
unchanged (in this case, span{w1, w2, w3} =span{w1, w2, v3}=span{v1, v2, v3}).

Continuing this, we let wk = vk −
< w1, vk >

< w1, w1 >
w1 − . . . −

< wk−1, vk >

< wk−1, wk−1 >
wk−1

Doing this all the way to n will replace v1, . . . , vn with orthogonal vectors w1, . . . , wn, without
changing the span.

One thing worth noting is that the if two vectors are orthogonal, then any scalar multiples of them
are, too. This means that if the coordinates of one of our wk are not to our satisfaction (having an
ugly denomenator, perhaps), we can scale it to change the coordinates to something more pleasant.
It is interesting to note that in so doing, the the later vectors wk are unchanged, since our scalar,
can be pulled out of both the top inner product and the bottom one in later calculations, and
cancelled.
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