
Math 314/814 Section 5

Topics since the second exam

Gram-Schmidt Orthogonalization.

Given a basis v1, . . . , vn for a subspace W , we can build an orthogonal basis for W by, essentially,
repeatedly subtracting from wi its orthogonal projection onto the span of the orthogonal vectors
we have built up to that point.
To do so we repeatedly use the formula

(*) projWi
(v) =

< w1, v >

< w1, w1 >
w1 + . . . +

< wi, v >

< wi, wi >
wi

for the projection of a vectors onto the span Wi of a collection of orthogonal vectors. Gram-Schmidt
orthogonalization consists of repeatedly using this formula to replace a collection of vectors with
ones that are orthogonal to one another, without changing their span. Starting with a collection
{v1, . . . , vn} of vectors in V ,

let w1 = v1, then let w2 = v2 −
< w1, v2 >

< w1, w1 >
w1 .

Then w1 and w2 are orthogonal, and since w2 is a linear combination of w1 = v1 and v2, while the
above equation can also be rewritten to give v2 as a linaear combination of w1 and w2, the span is
unchanged. Continuing,

let w3 = v3 −
< w1, v3 >

< w1, w1 >
w1 −

< w2, v3 >

< w2, w2 >
w2 ; then since w1 and w2 are orthogonal, it is not

hard to check that w3 is orthogonal to both of them, and using the same argument, the span is
unchanged (in this case, span{w1, w2, w3} =span{w1, w2, v3}=span{v1, v2, v3}).

Continuing this, we let wk = vk −
< w1, vk >

< w1, w1 >
w1 − . . . −

< wk−1, vk >

< wk−1, wk−1 >
wk−1

Doing this all the way to n will replace v1, . . . , vn with orthogonal vectors w1, . . . , wn, without
changing the span.

One thing worth noting is that the if two vectors are orthogonal, then any scalar multiples of them
are, too. This means that if the coordinates of one of our wk are not to our satisfaction (having an
ugly denomenator, perhaps), we can scale it to change the coordinates to something more pleasant.
It is interesting to note that in so doing, the the later vectors wk are unchanged, since our scalar,
can be pulled out of both the top inner product and the bottom one in later calculations, and
cancelled.

Once we know how to build an orthogonal basis for a subspace W , we know how to compute the
orthogonal projection of a vector onto W ; we use the formula (*) above. This in turn allows to
compute the decomposition of any vector ~v ∈ R

n as ~v = ~w + ~w′ with ~w ∈ W and ~w′ ∈ W⊥;
~w = projW (~v) and ~w′ = ~v − ~w.

This in turn gives us the tools to establish some basic facts:

(W⊥)⊥ = W , since if ~w ∈ W , then ~w ⊥ ~v for every ~v ∈ W⊥, so w ∈ (W⊥)⊥, while if ~v ∈ (W⊥)⊥,
then writing ~v = ~w+ ~w′ as above, we have ~v− ~w ∈ (W⊥)⊥, so 0 =< ~v− ~w, ~w′ >=< ~v− ~w,~v− ~w >=
||~v − ~w||2, so ~v − ~w = ~0, so ~v = ~w ∈ W .

If W ⊆ R
n is a subspace, then dim(W )+dim(W⊥) = n; this is because we can express W = col(A)

for some matrix A (having columns a spanning set for W ), and then W⊥ = null(AT ), so
dim(W )+dim(W⊥) = rank(A)+nullity(AT ) = rowrank(A)+nullity(AT ) = rank(AT )+nullity(AT ) =(#
of pivots for AT ) + (# free variables for AT ) =# of columns of AT = # of rows of A = n.

Even more, any basis for W , together with a basis for W⊥, forms a basis for R
n. This is becuse

such a collection of vectors will form n vectors in R
n and will be linearly independent. This is
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because if we express ~0 as a linear combination of them, we can rearrange terms so that a linear
combination of the W -vectors equals a linear combination of the W⊥-vectors. This vector lies in
W ∩ W⊥ = {~0}, so since each basis is linearly independent, both sets of coefficients are 0.

Best approximations.

In the real world, the coefficients and target vector of a system of linear equations are only known
up to some (measurement) error. But if the rank of the matrix is too small (e.g., we have more
variables than equations), small changes in values can easily lead to an inconsistent system. In

other words, our target, ~b might end up lying close to, but not in, the column space col(A), of our

coefficient matrix. The appropriate solution, then, is to find the value of A~x, closest to ~b, and treat
~x as our “solution” to the inconsisent system A~x = ~b.

How? Minimize ||A~x −~b||2, i.e., minimize ~w −~b for ~w ∈ col(A). If we use an orthonormal basis

{~w1, . . . , ~wk} for col(A), then < (Σxi ~wi) −~b, (Σxi ~wi) −~b >=< ~b,~b > +Σ(x2
i − 2xi < ~wi,~b >) is

minimized when (the gradient of this function of the xi is 0, i.e.) xi =< ~wi,~b > for each i, so the

vector ~w closest to ~b is Σ < ~wi,~b > ~wi = projcol(A)(~b), i.e., the orthogonal projection of ~b to the
column space of A.

But! we don’t need to build an orthogonal basis for col(A) in order to compute this; ~w =

projcol(A)(~b) is the (unique) vector ~w ∈ col(A) such that ~w − ~b ∈ (col(A))⊥ = null(AT ), so we

need to find ~w = A~x so that AT (A~x −~b) = ~0, i.e., (AT A)~x = AT~b.

This linear system is consistent (we know that the needed A~x exists); solving the system for ~x

gives us the vector A~x = projcol(A)(~b), and so gives us a method for computing the orthogonal
projection onto any subspace (that we have a spanning set for), without needing to compute an

orthogonal basis for it first. A~x = ~w is also the closest vector to ~b for which A~x = ~w is consistent;
~x is called the least squares solution to the inconsistent system A~x = ~b.

Note: if AT A is invertible (need: r(A)=number of columnsof A), then we can write ~x = (AT A)−1(AT~b);

A~x = A(AT A)−1(AT~b).

Regression Lines.

We can apply this technology to produce a method for finding the “best fit” line to a collection
of data. Suppose we have a collection (x1, y1), . . . , (xn, yn) of data points, and we wish to find
the line L(x) = y = ax + b that best fits the data. Typically, this means that we want, on
average, that the deviation between yi and L(xi) to be as small as possible. In practice, what
we minimize is the distance between the “value vector”, [y1, . . . , yn]T and the “predicted vector”
[ax1 + b, . . . , axn + b]T . Our unknowns are a, b, and our predicted vector can be expressed as a
matrix product,




ax1 + b
...

axn + b



 =





x1 1
...

...
xn 1





[

a

b

]

= A

[

a

b

]

=







y1
...

yn






= ~y

So we want the vector [a, b]T so that A[a, b]T is closest to ~y. But this is precisely the situation we
just worked through; the slope (a) and intercept (b) of the best-fitting line are the solution to the
system

AT A

[

a

b

]

= AT ~y, which works out to

[

Σx2
i

Σxi

Σxi n

] [

a

b

]

=

[

Σxiyi

Σyi

]

(although we need not re-

member that....). The 2× 2 matrix AT A is invertible, unless all of the xi are equal to one another.
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Symmetric matrices and Orthogonal Diagonalization.

A symmetric matrix Ais one for which AT = A. It is a fundamental fact (the “Spectral Theorem”)
that every symmetric matrix is diagonalizable, and in fact in a special way. This follows from the
following facts:

Every eigenvalue of a symmetric matrix A is real. That is, the characteristic χA(λ) factors as a
product of linear polynomials with coefficients in R. This can be shown by supposing an eigenvalue
λ0 is complex, finding a complex eigenvector ~v, and using AT = A to show that (where a + bi =
a − bi means the complex conjugate)
λ0||~v|| = λ0 < ~v,~v >=< λ0~v,~v >< A~v,~v >= (A~v)T~v = ~vT AT~v~vT A~v = ~vT A~v = ~vT A~v = ~vT λ0~v =
~vT λ0~v = λ0~v

T~v = λ0||~v||, so λ0 = λ0, so λ0 is real.

If ~v, ~w are eigenectors for A with different eigenvalues λ 6= µ, then ~v ⊥ ~w. This is because
λ < ~v, ~w >=< λ~v, ~w >=< A~v, ~w >= (A~v)T ~w = ~vT AT ~w = ~vT A~w = ~vT (A~w) = ~vT (µ~w) =
µ(~vT ~w) = µ < ~v, ~w >, so (λ − µ) < ~v, ~w >= 0, so < ~v, ~w >= 0, since λ − µ 6= 0.

If B is a symmmetric matrix and Q is an orthogonal matrix (so Q−1 = QT ), then A = Q−1BQ is
symmetric. This is because A = Q−1BQ = QT BQ = QT BT (QT )T = (QT BQ)T = (Q−1BQ)T =
AT . So if a matrix A has an orthonormal basis of eigenvectors, then AQ = QD with D diagonal
and Q orthogonal, so A = (Q−1)−1D(Q−1) is symmetric. But the important point is that the
reverse is true!

To see this, we pick an eigenvalue (real) λ for A and an eigenvector with length 1, and extend the
eigenvector to a orthonormal basis for R

n (by extending it to a basis and applying Gram-Schmidt).
Assembling these into a matrix B, we then have that the first column of AB is lambda times the
first column of B, so the first column of C = B−1AB is λ~e1. But! C is also symmetric, so the
first row of C is λ followed by 0s. This means that C looks like the beginnings of a diagonal
matrix, the first row and column are right, and the rest is a (smaller!) diagonal matrix. The basic
idea is to do the exact same thing to the smaller matrix; find an eigenvalue and eigenvector to
extend to an orthonormal basis of R

n−1 (which we think of as the last n−1 coordinates of R
n) and

“diagonalize” the next row. Essentially, we are diagonalizing the next row an column of C, by using
the orthogonal matrix with columns e1 and the n − 1 vectors this step built. It’s the end of the
semester, so we will leave further details to your imagination (or reading), but applying this n times
yields n orthogonal matrices Q1, . . . ,Qn so that QT

n · · ·QT
1 AQ1 · · ·Qn = (Q1 · · ·Qn)T A(Q1 · · ·Qn)

is a diagonal matrix; but Q1 · · ·Qn is a product of orthogonal matrices, so is orthogonal (each
preserves length || · ||, so their product (i.e., composistion) does) establishng that A is orthogonally

diagonalizable, as desired.
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