

Math 314/814

Topics for second exam

Technically, everything covered by the first exam **plus**

Subspaces, bases, dimension, and rank

Basic idea: $W \subseteq \mathbb{R}^n$ is a subspace if whenever $c \in \mathbb{R}$ and $u, v \in W$, we **always** have $cu, u + v \in W$ (W is “closed” under addition and scalar multiplication).

Examples: $\{(x, y, z) \in \mathbb{R}^3 : z = 0\}$ is a subspace of \mathbb{R}^3

$\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ is **not** a subspace of \mathbb{R}^3

Basic construction: $v_1, \dots, v_n \in V$

$W = \{a_1v_1 + \dots + a_nv_n : a_1, \dots, a_n \in \mathbb{R}\}$ = all linear combinations of v_1, \dots, v_n = $\text{span}\{v_1, \dots, v_n\}$
= the *span* of v_1, \dots, v_n , is a subspace of \mathbb{R}^k

Basic fact: if $w_1, \dots, w_k \in \text{span}\{v_1, \dots, v_n\}$, then $\text{span}\{w_1, \dots, w_k\} \subseteq \text{span}\{v_1, \dots, v_n\}$

Subspaces from matrices

column space of $A = \text{col}(A) = \text{span}\{\text{the columns of } A\}$

row space of $A = \text{row}(A) = \text{span}\{\text{(transposes of the) rows of } A\}$

nullspace of $A = \text{null}(A) = \{x \in \mathbb{R}^n : Ax = 0\}$

(Check: $\text{null}(A)$ is a subspace!)

Alternative view $Ax = \text{lin comb of columns of } A$, so is in $\text{col}(A)$; in fact, $\text{col}(A) = \{Ax : x \in \mathbb{R}^n\}$.
So $\text{col}(A)$ is the set of vectors b for which $Ax = b$ has a solution. Any two solutions $Ax = b = Ay$ have $A(x - y) = AX - AY = b - b = 0$, so $x - y$ is in $\text{null}(A)$. So the collection of all solutions to $AX = b$ are (particular solution)+(vector in $\text{null}(A)$). So $\text{col}(A)$ tells us which SLEs have solutions, and $\text{null}(A)$ tells us how many solutions there are.

Bases:

A **basis** for a subspace V is a set of vectors v_1, \dots, v_n so that (a) they are linearly independent, and (b) $V = \text{span}\{v_1, \dots, v_n\}$.

The idea: a basis allows you to express every vector in the subspace as a linear combination in exactly one way.

A system of equations $Ax = b$ has a solution iff $b \in \text{col}(A)$.

If $Ax_0 = b$, then every other solution to $Ax = b$ is $x = x_0 + z$, where $z \in \text{null}(A)$.

The row, column, and nullspaces of a matrix A are therefore useful spaces (they tell us useful things about solutions to the corresponding linear system), so it is useful to have bases for them.

Finding a basis for the row space.

Basic idea: if B is obtained from A by elementary row operations, then $\text{row}(A) = \text{row}(B)$.

So if R is the reduced row echelon form of A , $\text{row}(R) = \text{row}(A)$

But a basis for $\text{row}(R)$ is quick to identify; take all of the non-zero rows of R ! (The zero rows are clearly redundant.) These rows are linearly independent, since each has a ‘special coordinate’ where, among the rows, only it is non-zero. That coordinate is the *pivot* in that row. So in any linear combination of rows, only that vector can contribute something non-zero to that coordinate. *Consequently*, in any linear combination, that coordinate is the **coefficient** of our vector! **So**, if the lin comb is $\vec{0}$, the coefficient of our vector (i.e., of each vector!) is 0.

Put bluntly, to find a basis for $\text{row}(A)$, row reduce A , to R ; the (transposes of) the non-zero rows of R form a basis for $\text{row}(A)$.

This in turn gives a way to find a basis for $\text{col}(A)$, since $\text{col}(A) = \text{row}(A^T)$!

To find a basis for $\text{col}(A)$, take A^T , row reduce it to S ; the (transposes of) the non-zero rows of S form a basis for $\text{row}(A^T) = \text{col}(A)$.

This is probably in fact the most useful basis for $\text{col}(A)$, since each basis vector has that special coordinate. This makes it very quick to decide if, for any given vector b , $Ax = b$ has a solution. You need to decide if b can be written as a linear combination of your basis vectors; but each coefficient will be the coordinate of b lying at the special coordinate of each vector. Then just check to see if **that** linear combination of your basis vectors adds up to b !

There is another, perhaps less useful, but faster way to build a basis for $\text{col}(A)$; row reduce A to R , locate the pivots in R , and take the columns of A (Note: A , **not** R !) that correspond to the columns containing the pivots. These form a (different) basis for $\text{col}(A)$.

Why? Imagine building a matrix B out of just the pivot columns. Then in row reduced form there is a pivot in every column. Solving $Bv = \vec{0}$ in the case that there are no free variables, we get $v = \vec{0}$, so the columns are linearly independent. If we now add a free column to B to get C , we get the same collection of pivots, so our added column represents a free variable. Then there are non-trivial solutions to $Cv = \vec{0}$, so the columns of C are not linearly independent. This means that the added columns can be expressed as a linear combination of the bound columns. This is true for all free columns, so the bound columns span $\text{col}(A)$.

Finally, there is the nullspace $\text{null}(A)$. To find a basis for $\text{null}(A)$:

Row reduce A to R , and use each row of R to solve $Rx = \vec{0}$ by expressing each bound variable in terms of the frees. collect the coefficients together and write $x = x_{i_1}v_1 + \dots + x_{i_k}v_k$ where the x_{i_j} are the free variables. Then the vectors v_1, \dots, v_k form a basis for $\text{null}(A)$.

Why? By construction they span $\text{null}(A)$; and just as with our row space procedure, each has a special coordinate where only it is not 0 (the coordinate corresponding to the free variable!).

Note: since the number of vectors in the bases for $\text{row}(A)$ and $\text{col}(A)$ is the same as the number of pivots (= number of nonzero rows in the RREF) = rank of A , we have $\dim(\text{row}(A)) = \dim(\text{col}(A)) = r(A)$. And since the number of vectors in the basis for $\text{null}(A)$ is the same as the number of free variables for A (= the number of columns without a pivot) = nullity of A (hence the name!), we have $\dim(\text{null}(A)) = n(A) = n - r(A)$ (where n =number of columns of A).

So, $\dim(\text{col}(A)) + \dim(\text{null}(A)) =$ the number of columns of A .

More on Bases.

A **basis** for a subspace V of \mathbb{R}^k is a set of vectors v_1, \dots, v_n so that (a) they are linearly independent, and (b) $V = \text{span}\{v_1, \dots, v_n\}$.

Example: The vectors $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, \dots , $e_n = (0, \dots, 0, 1)$ are a basis for \mathbb{R}^n , the *standard basis*.

To find a basis: start with a collection of vectors that span, and repeatedly throw out redundant vectors (so you don't change the span) until the ones that are left are linearly independent. Note: each time you throw one out, you need to ask: are the remaining ones lin indep?

Basic fact: If v_1, \dots, v_n is a basis for V , then every $v \in V$ can be expressed as a linear combination of the v_i 's in *exactly one way*. If $v = a_1v_1 + \dots + a_nv_n$, we call the a_i the **coordinates** of v with respect to the basis v_1, \dots, v_n . We can then think of v as the vector $(a_1, \dots, a_n)^T$ = the coordinates of v with respect to the basis v_1, \dots, v_n , so we can think of V as "really" being \mathbb{R}^n .

The Basis Theorem: Any two bases of the same vector space contain the same number of vectors. (This common number is called the *dimension* of V , denoted $\dim(V)$.)

Reason: if v_1, \dots, v_n is a basis for V and $w_1, \dots, w_k \in V$ are linearly independent, then $k \leq n$

As part of that proof, we also learned:

If v_1, \dots, v_n is a basis for V and w_1, \dots, w_k are linearly independent, then the spanning set $v_1, \dots, v_n, w_1, \dots, w_k$ for V can be thinned down to a basis for V by throwing away v_i 's.

In reverse: we can take any linearly independent set of vectors in V , and **add** to it from any basis for V , to produce a new basis for V .

Some consequences:

If $\dim(V)=n$, and $W \subseteq V$ is a subspace of V , then $\dim(W) \leq n$

If $\dim(V)=n$ and $v_1, \dots, v_n \in V$ are linearly independent, then they also span V

If $\dim(V)=n$ and $v_1, \dots, v_n \in V$ span V , then they are also linearly independent.

Linear Transformations.

$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a linear transformation if $T(cu + dv) = cT(u) + dT(v)$ for all $c, d \in \mathbb{R}$, $u, v \in \mathbb{R}^n$. This can be verified in two steps: check $T(cu) = cT(u)$ for all $c \in \mathbb{R}$ and $u \in \mathbb{R}^n$, and $T(u + v) = T(u) + T(v)$ for all $u, v \in \mathbb{R}^n$.

Example: $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $T_A(v) = Av$, is linear

$T : \{\text{functions defined on } [a, b]\} \rightarrow \mathbb{R}$, $T(f) = f(b)$, is linear

$T : \mathbb{R}^2 \rightarrow \mathbb{R}$, $T(x, y) = x - xy + 3y$ is **not** linear!

Basic fact: every linear transf $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is $T = T_A$ for some matrix A : A = the matrix with i -th column $T(e_i)$, e_i = the i -th coordinate vector in \mathbb{R}^n .

Using the idea of coordinates for a subspace, we can extend these notions to linear transformations $T : V \rightarrow W$; thinking of vectors as their coordinates, each T is “really” T_A for some matrix A .

The composition of two linear transformations is linear; in fact $T_A \circ T_B = T_{AB}$. So matrix multiplication is really function composition!

If A is invertible, then T_A is an invertible function, with inverse $T_A^{-1} = T_{A^{-1}}$.

Application: Markov chains.

In many situations we wish to study a characteristic (or characteristics) of a population, which changes over time. Often the rule for how the quantities change may be linear; our goal is to understand what the long term behavior of the situation is.

Initially, the characteristic of the population (think: favorite food, political affiliation, choice of hair color) is distributed among some collection of values; we represent this *initial state* as a vector \vec{v}_0 giving the fraction of the whole population which takes each value. (The entries of \vec{v}_0 sum to 1.) As time progresses, with each fixed time interval the distribution of the population changes by multiplication by a *transition matrix* A , whose (i, j) entry $a_{i,j}$ records what fraction of the population having the i -th characteristic chooses to switch to the j -th characteristic. Since every person/object in the population ends up with some characteristic, each column of A (which describes how the i -th characteristic gets redistributed) must sum to 1. After the tick of the clock, the distribution of our initial population, given by \vec{v}_0 , changes to $\vec{v}_1 = A\vec{v}_0$. After n ticks of the clock, the population distribution is given by $\vec{v}_n = A^n\vec{v}_0$.

The main questions to answer are: does the population distribution stabilize over time? And if so, what does it stabilize to? A stable distribution \vec{v} is one which is unchanged as time progresses: $A\vec{v} = \vec{v}$. This can be determined by reinterpreting stability as $(A - I)\vec{v} = \vec{0}$, i.e., \vec{v} lies in the nullspace of the matrix $A - I$. Which we can compute! Our solution should also have all entries non-negative (to reflect that its entries represent parts of a whole) and add up to 1.

It is a basic fact that every transition vector has a stable solution. This is because $A^T \vec{x} = \vec{x}$, where \vec{x} is the all-1's vector. So $A^T - I = (A - I)^T$ is not invertible, so $A - I$ is not invertible! Moreover, under very mild assumptions (e.g., no entry of A is 0) every initial state \vec{v}_0 , under repeated multiplication by A , will converge to the exact same stable distribution. Which we can compute by the method above!

Chapter 4: Eigenvalues, eigenvectors, and determinants

Determinants.

(Square) matrices come in two flavors: invertible (all $Ax = b$ have a solution) and non-invertible ($Ax = \vec{0}$ has a non-trivial solution). It is an amazing fact that one number identifies this difference; the determinant of A .

For 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, this number is $\det(A) = ad - bc$; if $\neq 0$, A is invertible, if $= 0$, A is non-invertible (=singular).

For larger matrices, there is a similar (but more complicated formula):

$A = n \times n$ matrix, $M_{ij}(A)$ = matrix obtained by removing i th row and j th column of A .

$\det(A) = \sum_{i=1}^n (-1)^{i+1} a_{i1} \det(M_{i1}(A))$

(this is called expanding along the first column)

Amazing properties:

If A is upper triangular, then $\det(A) =$ product of the entries on the diagonal

If you multiply a row of A by c to get B , then $\det(B) = c\det(A)$

If you add a mult of one row of A to another to get B , then $\det(B) = \det(A)$

If you switch a pair of rows of A to get B , then $\det(B) = -\det(A)$

In other words, we can understand exactly how each elementary row operation affects the determinant. In part, A is invertible iff $\det(A) \neq 0$.

In fact, we can **use** row operations to calculate $\det(A)$ (since the RREF of a matrix is upper triangular). We just need to *keep track* of the row operations we perform, and compensate for the changes in the determinant;

$\det(A) = (1/c)\det(E_i(c)A)$, $\det(A) = (-1)\det(E_{ij}A)$

More interesting facts:

$\det(AB) = \det(A)\det(B)$; $\det(A^T) = \det(A)$; $\det(A^{-1}) = [\det(A)]^{-1}$

We can expand along other columns than the first: for any fixed value of j (= column),

$\det(A) = \sum_{i=1}^n (-1)^{i+j} a_{ij} \det(M_{ij}(A))$

(expanding along j th column)

And since $\det(A^T) = \det(A)$, we could expand along **rows**, as well.... for any fixed i (= row),

$\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(M_{ij}(A))$

A formula for the inverse of a matrix:

If we define A_c to be the matrix whose (i, j) th entry is $(-1)^{i+j} \det(M_{ij}(A))$, then $A_c^T A = (\det A)I$ (A_c^T is called the *adjoint* of A). So if $\det(A) \neq 0$, then we can write the inverse of A as

$A^{-1} = \frac{1}{\det(A)} A_c^T$ (This is very handy for 2×2 matrices...)

The same approach allows us to write an explicit formula for the solution to $Ax = b$, when A is invertible:

If we write $B_i = A$ with its i th column replaced by b , then the (unique) solution to $Ax = b$ has i th coordinate equal to

$$\frac{\det(B_i)}{\det(A)}$$

Eigenvectors and Eigenvalues.

For A an $n \times n$ matrix, v is an *eigenvector* (e-vector, for short) for A if $v \neq 0$ and $Av = \lambda v$ for some (real or complex, depending on the context) number λ . λ is called the associated *eigenvalue* for A . A matrix which has an eigenvector has *lots* of them; if v is an eigenvector, then so is $2v$, $3v$, etc. On the other hand, a matrix does not have lots of eigenvalues:

If λ is an e-value for A , then $(\lambda I - A)v = 0$ for some non-zero vector v . So $\text{null}(\lambda I - A) \neq \{0\}$, so $\det(\lambda I - A) = 0$. But $\det(tI - A) = \chi_A(t)$, thought of as a function of t , is a polynomial of degree n , so has at most n roots. So A has at most n different eigenvalues.

$\chi_A(t) = \det(tI - A)$ is called the *characteristic polynomial* of A .

$\text{null}(\lambda I - A) = E_\lambda(A)$ is (ignoring 0) the collection of all e-vectors for A with e-value λ . It is called the *eigenspace* (or e-space) for A corresponding to λ . An *eigensystem* for a (square) matrix A is a list of all of its e-values, along with their corresponding e-spaces.

One somewhat simple case: if A is (upper or lower) triangular, then the e-values for A are exactly the diagonal entries of A , since $tI - A$ is also triangular, so its determinant is the product of its diagonal entries.

We call $\dim(\text{null}(\lambda I - A))$ the *geometric multiplicity* of λ , and the number of times λ is a root of $\chi_A(t)$ (= number of times $(t - \lambda)$ is a factor) = $m(\lambda)$ = the *algebraic multiplicity* of λ .

Some basic facts:

The number of real eigenvalues for an $n \times n$ matrix is $\leq n$.

Counting multiplicity and complex roots the number of eigenvalues = n .

For every e-value λ , $1 \leq$ the geometric multiplicity $\leq m(\lambda)$.

(non-zero) e-vectors having all different e-values are linearly independent.

Similarity and diagonalization

The basic idea: to understand a Markov chain $x_n = A^n x_0$, you need to compute large powers of A . This can be hard! There ought to be an easier way. Eigenvalues (or rather, eigenvectors) can help (if you have enough of them).

The matrix $A = \begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$ has e-values 1 and 6 (Check!) with corresponding e-vectors $(1, -1)$ and $(2, 3)$. This then means that

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}, \text{ which we write } AP = PD,$$

where P is the matrix whose columns are our e-vectors, and D is a diagonal matrix. Written slightly differently, this says $A = PDP^{-1}$.

We say two matrices A and B are *similar* if there is an invertible matrix P so that $AP = PB$. (Equivalently, $P^{-1}AP = B$, or $A = PBP^{-1}$.) A matrix A is *diagonalizable* if it is similar to a diagonal matrix.

We write $A \sim B$ if A is similar to B , i.e., $P^{-1}AP = B$. We can check:

$A \sim A$; if $A \sim B$ then $B \sim A$; if $A \sim B$ and $B \sim C$, then $A \sim C$. (We say that “ \sim ” is an *equivalence relation*.)

Why do we care about similarity? We can check that if $A = PBP^{-1}$, then $A^n = PBP^{-1}$. If B^n is quick to calculate (e.g., if B is diagonal; B^n is then also diagonal, and its diagonal entries are the powers of B 's diagonal entries), this means A^n is also fairly quick to calculate!

Also, if A and B are similar, then they have the same characteristic polynomial, so they have the same eigenvalues. They do, however, have different eigenvectors; in fact, if $AP = PB$ and $Bv = \lambda v$, then $A(Pv) = \lambda(Pv)$, i.e., the e-vectors of A are P times the e-vectors of B . Similar matrices also have the same determinant, rank, and nullity.

These facts in turn tell us when a matrix can be diagonalized. Since for a diagonal matrix D , each of the standard basis vectors e_i is an e-vector, \mathbb{R}^n has a basis consisting of e-vectors for D . If A is similar to D , via P , then each of Pe_i is the i th column of P is an e-vector. But since P is invertible, its columns form a basis for \mathbb{R}^n , as well. So there is a basis consisting of e-vectors of A . On the other hand, such a basis guarantees that A is diagonalizable (just run the above argument in reverse...), so we find that:

(The Diagonalization Theorem) An $n \times n$ matrix A is diagonalizable if and only if there is a basis of \mathbb{R}^n consisting of eigenvectors of A .

And one way to guarantee that such a basis exists: If A is $n \times n$ and has n distinct eigenvalues, then choosing an e-vector for each will always yield a linear independent collection of vectors (so, since there are n of them, you get a basis for \mathbb{R}^n). So:

If A is $n \times n$ and has n distinct (real) eigenvalues, A is diagonalizable. In fact, the dimensions of all of the eigenspaces for A (for real eigenvalues λ) add up to n if and only if A is diagonalizable.

Chapter 5: Orthogonality.

Length and inner product.

“Norm” means length! In \mathbb{R}^n this is computed as $\|x\| = \|(x_1, \dots, x_n)\| = (x_1^2 + \dots + x_n^2)^{1/2}$

Basic facts: $\|x\| \geq 0$, and $\|x\| = 0$ iff $x = \vec{0}$,

$\|cu\| = |c| \cdot \|u\|$, and $\|u + v\| \leq \|u\| + \|v\|$ (triangle inequality)

unit vector: the norm of $u/\|u\|$ is 1; $u/\|u\|$ is the *unit vector* in the direction of u .

Inner product:

idea: assign a number to a pair of vectors (think: angle between them?)

In \mathbb{R}^n , we use the *dot product*: $v = (v_1, \dots, v_n)$, $w = (w_1, \dots, w_n)$

$$v \bullet w = \langle v, w \rangle = v_1 w_1 + \dots + v_n w_n = v^T w$$

Basic facts:

$$\langle v, v \rangle = \|v\|^2 \text{ (so } \langle v, v \rangle \geq 0, \text{ and equals 0 iff } v = \vec{0})$$

$$\langle v, w \rangle = \langle w, v \rangle; \langle cv, w \rangle = \langle v, cw \rangle = c\langle v, w \rangle \langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$$

Orthogonality.

Two vectors are *orthogonal* if their angle is $\pi/2$, i.e., $\langle v, w \rangle = 0$. Notation: $v \perp w$. (Also say they are *perpendicular*.)

A collection of vectors $\{v_1, \dots, v_k\}$ is an *orthogonal set* if $v_i \perp v_j$ for every $i \neq j$. If all of the vectors in an orthogonal set are non-zero, then they are linearly independent.

An *orthogonal basis* for a subspace W is basis for W that is also an orthogonal set. If we have an orthogonal basis v_1, \dots, v_k for W , then determining the coordinates for a vector $w \in W$ is quick: $w = \sum a_i v_i$ for $a_i = \langle w, v_i \rangle / \|v_i\|^2$.

A collection of vectors $\{v_1, \dots, v_k\}$ is an *orthonormal set* (we write “o.n. set”) if they are an orthogonal set and $\|v_i\| = 1$ for every i . An *orthonormal basis* (o.n. basis) is a basis that is also an orthonormal set. For an o.n. basis for W , the coordinates of $w \in W$ are even shorter: $w = \sum a_i v_i$ for $a_i = \langle w, v_i \rangle$.