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Math 314/814 Matrix Theory, Section 001
Final Exam

Show all work. Include all steps necessary to arrive at an answer unaided by a mechanical
computational device. The steps you take to your answer are just as important, if not more
important, than the answer itself. If you think it, write it!
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A.1. (20 pts.) Find the inverse of the matrix A = (3 2 —1) o
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A.2. (15 pts.) Determine whether or not the vectors
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are linearly independent.
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A.3. (20 pts.) Find an orthogonal basis for the column space of the matrix
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A.4. (20 pts.) Find the least squares regression line which best approximates the data
points

0,1),(1,0),(2,3),(3,5)
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B.1. (15 pts.) Find the orthogonal projection of the vector b= {2} onto the column space
4
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B.2. (15 pts.) If T: R® — R? is a linear transformation with
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what is T [
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B.4. (15 pts.) Suppose that A is an invertible n xn matrix. Show that if A is diagonalizable
then A~ is diagonalizable, as well.
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