
Math 314/814

Topics for first exam

Chapter 2: Systems of linear equations

Some examples
Systems of linear equations:

2x − 3y − z = 6
3x + 2y + z = 7

Goal: find simultaneous solutions: all x, y, z satisfying both equations.
Most general type of system:

a11x1 + · · · + a1nxn = b1

· · ·
am1x1 + · · · + amnxn = bm

Gaussian elimination: basic ideas

3x + 5y = 2
2x + 3y = 1

Idea use 3x in first equation to eliminate 2x in second equation. How? Add a multiply of first
equation to second. Then use y-term in new second equation to remove 5y from first!
The point: a solution to the original equations must also solve the new equations. The real point:
it’s much easier to figure out the solutions of the new equations!

Streamlining: keep only the essential information; throw away unneeded symbols!

3   5      2
2   3      1

3x+5y=2
2x+3y=1

replace
with

We get an (augmented) matrix representing the system of equations. We carry out the same
operations we used with equations, but do them to the rows of the matrix.
Three basic operations (elementary row operations):

Eij : switch ith and jth rows of the matrix
Eij(m) : add m times jth row to the ith row
Ei(m) : multiply ith row by m

Terminology: first non-zero entry of a row = leading entry; leading entry used to zero out a
column = pivot.
Basic procedure (Gauss-Jordan elimination): find non-zero entry in first column, switch up to first
row (E1j) (pivot in (1,1) position). Use E1(m) to make first entry a 1, then use E1j(m) operations
to zero out the other entries of the first column. Then: find leftmost entry in remaining rows, switch
to second row, use as a pivot to clear out the entries in the column below it. Continue (forward
solving). When done, use pivots to clear out entries in column above the pivots (back-solving).

Variable in linear system corresponding to a pivot = bound variable; other variables = free
variables

Gaussian elimination: general procedure

The big fact: After elimination, the new system of linear equations have the exact same solu-
tions as the old system. Because: row operations are reversible!
Reverse of Eij is Eij ; reverse of Eij(m) is Eij(−m); reverse of Ei(m) is Ei(1/m)
So: you can get old equations from new ones; so solution to new equations must solve old equations
as well.
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Reduced row form: apply elementary row operations so turn matrix A into one so that
(a) each row looks like (000 · · · 0 ∗ ∗ · · · ∗); firsdt ∗ = leading entry
(b) leading entry for row below is further to the right

Reduced row echelon form: in addition, have
(c) each leading entry is = 1
(d) each leading entry is the only non-zero number in its column.

RRF can be achieved by forward solving; RREF by back-solving and Ei(m) ’s
Elimination: every matrix can be put into RREF by elementary row operations.
Big Fact: If a matrix A is put into RREF by two different sets of row operations, you get the same
matrix.
RREF of an augmented matrix: can read off solutions to linear system.

1   0   2   0      2
0   1   1   0      1
0   0   0   1      3

means x =3, x =1-x
x =2-2x1

2 34

3 ; x  is free3

Inconsistent systems: row of zeros in coefficient matrix, followed by a non-zero number (e.g., 2).
Translates as 0=2 ! System has no solutions.

Rank of a matrix = r(A) = number of non-zero rows in RREF = number of pivots in RREF.
Nullity of a matrix = n(A) = number of columns without a pivot = # columns − # pivots
rank = number of bound variables, nullity = number of free variables
rank ≤ number of rows, number of columns (at most one pivot per row/column!)
rank + nullity = number of columns = number of variables

A = coefficient matrix, Ã = augmented matrix (A = m × n matrix)
system is consistent if and only if r(A) = r(Ã)
r(A)=n : unique solution ; r(A)< n : infinitely many solutions

Spanning sets and linear independence

We can interpret an SLE in terms of (column) vectors; writing vi = ith column of the coefficient
matrix, and b=the column of target values, then our SLE really reads as a single equation x1v1 +
· · ·+xnvn = b. The lefthand side of this equation is a linear combination of the vectors v1, . . . , vn,
that is, a sum of scalar multiples. Asking if the SLE has a solution is the same as asking if b is a
linear combination of the vi.
This is an important enough concept that we introduce new terminology for it; the span of a
collection of vectors, span(v1, . . . , vn) is the collection of all linear combinations of the vectors. If
the span of the (m × 1) column vectors v1, . . . , vn is all of R

m, we say that the vectors span R
m.

Asking if an SLE has a solution is the same as asking if the target vector is in the span of the
column vectors of the coefficient matrix.

The flipside of spanning is linear independence. A collection of vectors v1, . . . , vn is linearly in-
dependent if the only solution to x1v1 + · · · + xnvn = 0 (the 0-vector) is x1 = · · · = xn = 0
(the “trivial” solution). If there is a non-trivial solution, then we say that the vectors are linearly
dependent. If a collection of vectors is linearly dependent, then choosing a non-trivial solution
and a vector with non-zero coefficient, throwing everything else on the other side of the equation
expresses one vector as a linear combination of all of the others. Thinking in terms of an SLE, the
columns of a matrix are linearly dependent exactly when the SLE with target 0 has a non-trivial
solution, i.e., has more than one solution. It has the trivial (all 0) solution, so it is consistent, so
to have more than one, we need the the RREF for the matrix to have a free variable, i.e., the rank
of the coefficient matrix is less than the number of columns.
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Some applications

Allocation of resources:
If we have a collection of objects to manufacture, each requiring known amounts of the same collec-
tion of resources, then manufacturing differing amounts of the objects will use differing amounts of
the resources. If we have a fixed amount of each resource, we can determine how much of each ob-
ject to make in order to use all of our resources, by creating a system of linear equations. We treat
the amounts of each object we will manufacture as a vector of unknown variables ~v = (x, y, z, . . . )T ,
and we assemble the amounts of each resource A,B,C, . . . needed to manufacture each object as
a matrix M , with objects to manufacture indexing the columns, and the resources indexing the
rows. Then an “A” row reading (2 3 1 4) means that in order to constuct (x, y, z, w) units of the
objects we need 2x + 3y + z + 4w units of the resource “A”. [Columns of this matrix therefore
represent the amounts of each resource needed to manufacture one unit of the object indexed by
that column.] So if we know the amount of each resource on hand, assembled as a column vector
~b, then we can solve our resource allocation problem, namely, “what to manufacture in order to
use all of our available resources?”, by solving the system of linear equations M~v = ~b.

Balancing chemical reactions:
In a chemical reaction, some collection of molecules is converted into some other collection of
molecules. The proportions of each can be determined by solving an SLE:

E.g., when ethane is burned, x C2H6 and y O2 is converted into z CO2 and w H2O. Since the
number of each element must be the same on both sides of the reaction, we get a system of equations

C : 2x = z ; H : 6x = 2w ; O : 2y = w .
which we can solve. More complicated reactions, e.g., PbO2 + HCl → PbCl2 + CL2 + H2O, yield
more complicated equations, but can still be solved using the techniques we have developed.

Network Flow:
We can model a network of water pipes, or trafic flowing in a city’s streets, as a graph, that is, a
collection of points = vertices (=intersections=junctions) joined by edges = segments (=streets =
pipes). Monitoring the flow along particular edges can enable us to know the flow on every edge,
by solving a system of equations; at every vertex, the net flow must be zero. That is, the total flow
into the vertex must equal the total flow out of the vertex. Giving the edges arrows, depicting the
direction we think traffic is flowing along that edge, and labeling each edge with either the flow
we know (monitored edge) or a variable denoting the flow we don’t, we have a system of equations
(sum of flows into a vertex) = (sum of flows out of the vertex). Solving this system enables us to
determine the value of every variable, i.e., the flow along every edge. A negative value means that
the flow is opposite to the one we expected.

Chapter 3: Matrices

Matrix addition and scalar multiplication

Idea: take our ideas from vectors. Add entry by entry. Constant multiple of matrix: multiply
entry by entry.
0 = matrix all of whose entries are 0
Basic facts:

A+B makes sense only if A and B are the same size (m×n) matrix
A+B = B+A
(A+B)+C = A+(B+C)
A+0 = A
A+(-1)A = 0
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cA has the same size as A
c(dA) = (cd)A
(c+d)A = cA + dA
c(A+B) = cA + cB
1A = A

Matrix multiplication

Idea: don’t multiply entry by entry! We want matrix multplication to allow us to write a system
of linear equations as Ax=b ....
Basic step: a row of A, times x, equals an entry of Ax. (row vector (a1, . . . , an) times column
vector (x1, . . . , xn) is a1x1 + · · · + anxn ....) This leads to:
In AB, each row of A is ‘multiplied’ by each column of B to obtain an entry of AB. Need: the
length of the rows of A (= number of columns of A) = length of columns of B (= number of rows
of B). I.e, in order to multiply, A must be m×n, and B must be n×k; AB is then m×k.

Formula: (i,j)th entry of AB is Σn
k=1

aikbkj

I = identity matrix; square matrix (n×n) with 1’s on diagonal, 0’s off diagonal
Basic facts:

AI = A = IA
(AB)C = A(BC)
c(AB) = (cA)B = A(cB)
(A+B)C = AC + BC
A(B+C) = AB + AC

In general, however it is **not** **not** true that AB and BA are the same; they are almost
always different! ****

Special matrices and transposes

Elementary matrices:
A row operation (Eij , Eij(m) , Ei(m)) applied to a matrix A corresponds to multiplication (on
the left) by a matrix (also denoted Eij , Eij(m) , Ei(m)) The matrices are obtained by applying
the row operation to the identity matrix In. E.g., the 4×4 matrix E13(−2) looks like I, except it
has a −2 in the (1,3)th entry.
The idea: if A → B by the elementary row operation E, then B = EA.
So if A → B → C by elementary row operations, then C = E2E1A ....
Row reduction is matrix multiplication!

A scalar matrix A has the same number c in the diagonal entries, and 0’s everywhere else (the
idea: AB = cB)
A diagonal matrix has all entries zero off of the (main) diangonal
A upper triangular matrix has entries =0 below the diagonal, a lower triangular matrix is 0 above
the diagonal. A triangular matrix is either upper or lower triangular.
A strictly triangular matrix is triangular, and has zeros on the diagonal, as well. They come in
upper and lower flavors.

The transpose of a matrix A is the matrix AT whose columns are the rows of A (and vice versa).
AT is A reflected across the main diagonal. (aij)T = (aji) ; (m×n)T = (n×m)
Basic facts:

(A + B)T = AT + BT

(AB)T = BT AT

(cA)T = cAT
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(AT )T = A
Transpose of an elementary matrix is elementary:
ET

ij = Eij , Eij(m)T = Eji(m) , Ei(m)T = Ei(m)

A matrix A is symmetric if AT = A
An occasionally useful fact: AE, where E is an elementary matrix, is the result of an elementary
column operation on A .

The transpose and rank:
For any pair of compatible matrices, r(AB) ≤ r(A)
Consequences: r(AT ) = r(A) for any matrix A; r(AB) ≤ r(B), as well.

Matrix inverses

One way to solve Ax=b : find a matrix B with BA=I . When is there such a matrix?
(Think about square matrices...) A an n-by-n matrix ; n=r(I)=r(BA)≤r(A)≤n implies that r(A)=n
. This is necessary, and it is also sufficient!
r(A)=n, then the RREF of A has n pivots in n rows and columns, so has a pivot in every row, so
the RREF of A is I. But! this means we can get to I from A by row operations, which correspond
to multiplication by elementary matrices. *So* multiply A (on the left) by the correct elementary
matrices and you get I; call the product of those matrices B and you get BA=I !
A matrix B is an inverse of A if AB=I and BA=I; it turns out, the inverse of a matrix is always
unique. We call it A−1 (and call A invertible).
Finding A−1 : row reduction! (of course...)
Build the ”super-augmented” matrix (A|I) (the matrix A with the identity matrix next to it). Row
reduce A, and carry out the operations on the entire row of the S-A matrix (i.e., carry out the
identical row operations on I). Wnem done, if invertible+ the left-hand side of the S-A matrix will
be I; the right-hand side will be A−1 !
I.e., if (A|I) → (I|B) by row operations, then I=BA .

Basic facts:
(A−1)−1 = A
if A and B are invertible, then so is AB, and (AB)−1 - B−1A−1

(cA)−1 = (1/c)A−1

(AT )−1 = (A−1)T

If A is invertible, and AB = AC, then B = C; if BA = CA, then B = C.
Inverses of elementary matrices:

E−1

ij = Eij , Eij(m)−1 = Eij(−m) , Ei(m)−1 = Ei(1/m)
Highly useful formula: for a 2-by-2 matrix,

A= a   b
c   d

d   -b
-c   aD

D=ad-bc A -1and 1, =

(Note: need D=ad-bc 6= 0 for this to work....)
Some conditions for/consequences of invertibility: the following are all equivalent (A = n-by-n
matrix).

1. A is invertible,
2. r(A) = n.
3. The RREF of A is In.
4. Every linear system Ax=b has a unique solution.
5. For one choice of b, Ax=b has a unique solution (i.e., if one does, they all do...).
6. The equation Ax=0 has only the solution x=0.
7. There is a matrix B with BA=I.
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The equivalence of 4. and 6. is sometimes stated as Fredholm’s alternative: Either every
equation Ax=b has a unique solution, or the equation Ax=0 has a non-trivial solution (and only
one of the alternatives can occur).
Subspaces, bases, dimension, and rank

Basic idea: W ⊆ R
n is a subspace if whenever c ∈ R and u, v ∈ W , we always have cu, u + v ∈ W

(W is “closed” under addition and scalar multiplication).

Examples: {(x, y, z) ∈ R
3 : z = 0} is a subspace of R

3

{(x, y, z) ∈ R
3 : z = 1} is not a subspace of R

3

Basic construction: v1, · · · , vn ∈ V
W = {a1v1 + · · · anvn : a1, . . . , an ∈ R = all linear combinations of v1, · · · , vn = span{v1, · · · , vn}
= the span of v1, · · · , vn , is a subspace of R

k

Basic fact: if w1, . . . , wk ∈ span{v1, · · · , vn}, then span{w1, · · · , wk} ⊆ span{v1, · · · , vn}

Subspaces from matrices
column space of A = col(A) = span{the columns of A}
row space of A = row(A) = span{(transposes of the ) rows of A}
nullspace of A = null(A) = {x ∈ R

n : Ax = 0}

(Check: null(A) is a subspace!)

Alternative view Ax = lin comb of columns of A, so is in col(A); in fact, col(A) = {Ax : x ∈ R
n}.

So col(A) is the set of vectors b for which Ax = b has a solution. Any two solutions Ax = b = Ay
have A(x − y) = AX − Ay = b − b = 0, so x − y is in null(A). So the collection of all solutions to
AX = b are (particular solution)+(vector in null(A)). So col(A) tells is which SLEs have solutions,
and null(A) tells us how many solutions there are.

Bases:

A basis for a subspace V is a set of vectors v1, . . . , vn so that (a) they are linearly independent,
and (b) V =span{v1, . . . , vn} .
The idea: a basis allows you to express every vector in the subspace as a linear combination in
exactly one way.

A system of equations Ax = b has a solution iff b ∈col(A) .

If Ax0 = b, then every other solution to Ax = b is x = x0 + z, where z ∈null(A) .

The row, column, and nullspaces of a matrix A are therefore useful spaces (they tell us useful
things about solutions to the corresponding linear system), so it is useful to have bases for them.

Finding a basis for the row space.
Basic idea: if B is obtained from A by elementary row operations, then row(A) =row(B).
So of R is the reduced row echelon form of A, row(R) =row(A)
But a basis for row(R) is quick to identify; take all of the non-zero rows of R ! (The zero rows
are clearly redundant.) These rows are linearly independent, since each has a ‘special coordinate’
where, among the rows, only it is non-zero. That coordinate is the pivot in that row. So in any
linear combination of rows, only that vector can contribute something non-zero to that coordinate.
Consequently, in any linear combination, that coordinate is the coefficient of our vector! So, if
the lin comb is ~0, the coefficient of our vector (i.e., each vector!) is 0.

Put bluntly, to find a basis for row(A), row reduce A, to R; the (transposes of) the non-zero rows
of R form a basis for row(A).

This in turn gives a way to find a basis for col(A), since col(A) =row(AT ) !
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To find a basis for col(A), take AT , row reduce it to S; the (transposes of) the non-zero rows of S
form a basis for row(AT ) =col(A) .

This is probably in fact the most useful basis for col(A), since each basis vector has that special
coordinate. This makes it very quick to decide if, for any given vector b, Ax = b has a solution.
You need to decide if b can be written as a linear combination of your basis vectors; but each
coefficient will be the coordinate of b lying at the special coordinate of each vector. Then just
check to see if that linear combination of your basis vectors adds up to b !

There is another, perhaps less useful, but faster way to build a basis for col(A); row reduce A to
R, locate the pivots in R, and take the columns of A (Note: A, not R !) that correspond to the
columns containing the pivots. These form a (different) basis for col(A).

Why? Imagine building a matrix B out of just the pivot columns. Then in row reduced form there
is a pivot in every column. Solving Bv = ~0 in the case that there are no free variables, we get
v = ~0, so the columns are linearly independent. If we now add a free column to B to get C, we
get the same collection of pivots, so our added column represents a free variable. Then there are
non-trivial solutions to Cv = ~0, so the columns of C are not linearly independent. This means
that the added columns can be expressed as a linear combination of the bound columns. This is
true for all free columns, so the bound columns span col(A).

Finally, there is the nullspace null(A). To find a basis for null(A):

Row reduce A to R, and use each row of R to solve Rx = ~0 by expressing each bound variable in
terms of the frees. collect the coefficients together and write x = xi1v1 + · · · + xik

vk where the xij

are the free variables. Then the vectors v1, . . . , vk form a basis for null(A).

Why? By construction they span null(A); and just as with our row space procedure, each has a
special coordinate where only it is 0 (the coordinate corresponding to the free variable!).

Note: since the number of vectors in the bases for row(A) and col(A) is the same as the number of
pivots ( = number of nonzero rows in the RREF) = rank of A, we have dim(row(A))=dim(col(A))=r(A).
And since the number of vectors in the basis for null(A) is the same as the number of free variables
for A ( = the number of columns without a pivot) = nullity of A (hence the name!), we have
dim(null(A)) = n(A) = n − r(A) (where n=number of columns of A).
So, dim(col(A)) + dim(null(A)) = the number of columns of A .
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