
Math 314/814

Topics since the second exam

Note: The final exam covers all three of our topics sheets for the semester.

Chapter 5: Orthogonality.

Length and inner product.

“Norm” means length! In R
n this is computed as ||x|| = ||(x1, . . . , xn)|| = (x2

1 + · · · + x2
n)1/2

Basic facts: ||x|| ≥ 0, and ||x|| = 0 iff x = ~0,
||cu|| = |c| · ||u||, and ||u + v|| ≤ ||u|| + ||v|| (triangle inequality)

unit vector: the norm of u/||u|| is 1; u/||u|| is the unit vector in the direction of u.

Inner product:
idea: assign a number to a pair of vectors (think: angle between them?)
In R

n, we use the dot product: v = (v1, . . . , vn), w = (w1, . . . , wn)
v • w = 〈v,w〉 = v1w1 + · · · + vnwn = vT w

Basic facts:
〈v, v〉 = ||v||2 (so 〈v, v〉 ≥ 0, and equals 0 iff v = ~0)
〈v,w〉 = 〈w, v〉; 〈cv,w〉 = 〈v, cw〉 = c〈v,w〉 〈v1 + v2, w〉 = 〈v1, w〉 + 〈v2, w〉

Orthogonality.

Two vectors are orthogonal if their angle is π/2, i.e., 〈v,w〉=0. Notation: v ⊥ w. (Also say they are
perpendicular.)

A collection of vectors {v1, . . . , vk} is an orthogonal set if vi ⊥ vj for every i 6= j. If all of the vectors
in an orthogonal set are non-zero, then they are linearly independent.
An orthogonal basis for a subspace W is basis for W that is also an orthogonal set. If we have an
orthogonal basis v1, . . . , vk for W , then determining the coordinates for a vector w ∈ W is quick:
w = Σaivi for ai = 〈w, vi〉/||vi||

2 .

A collection of vectors {v1, . . . , vk} is an orthonormal set (we write “o.n. set”) if they are an orthogonal
set and ||vi|| = 1 for every i. An orthonormal basis (o.n. basis) is a basis that is also an orthonormal
set. For an o.n. basis for W , the coordinates of w =∈ W are even shorter: w = Σaivi for ai = 〈w, vi〉 .

Orthogonal Complements.

This notion of orthogonal vectors can even be used to reinterpret some of our dearly-held results about
systems of linear equations, where all of this stuff began.

Starting with Ax = 0, this can be interpreted as saying that <(every row of A),x >=0, i.e., x is
orthogonal to every row of A. This in turn implies that x is orthogonal to every linear combination of
rows of A, i.e., x is orthogonal to every vector in the row space of A.
This leads us to introduce a new concept: the orthogonal complement of a subspace W in a vector
space V , denoted W⊥, is the collection of vectors v with v ⊥ w for every vector w ∈ W . It is not hard
to see that these vectors form a subspace of V ; the sum of two vectors orthogonal to w, for example, is
orthogonal to w, so the sum of two vectors in W⊥ is also in W⊥ . The same is true for scalar multiples.

Some basic facts:
For every subspace W , W ∩ W⊥ = {0} (since anything in both is orthogonal to itself, and only the
0-vector has that property).
Finally, (W⊥)⊥ = W ; this is because W is contained in (W⊥)⊥ (a vector in W is orthogonal to every
vector that is orthogonal to things in W), and the dimensions of the two spaces are the same.

The importance that this has to systems of equations stems from the following facts:
null(A) = row(A)⊥

row(A) = null(A)⊥

col(A) = null(AT)⊥

This provides us with yet another (quicker?) way to decide if a system of equations A~x = ~b is consistent,

or rather, for which ~b is it consistent; ~b must lie in col(A), i.e., in null(AT)⊥. So it must be ⊥ to a basis

1

for null(AT). So we can compute a basis for null(AT), v1 . . . , vk, and use this to check for consistency:

A~x = ~b is consistent ⇔ 〈~b, vi〉 = 0 for every vi.

And to compute a basis for W⊥: start with a basis for W , writing them as the columns of a matrix A,
so W = col(A), then W⊥ = col(A)⊥ = row(AT)⊥ = null(AT), which we know how to compute a basis
for!

Or even better: start with a basis for W , writing them as the columns of a matrix A. Then row reduce
the superaugmented matrix (A|I) → (R|E) with R in REF or RREF. Then the transposes V1, . . . , vk

of the rows of E that stand opposite the all-0 rows of R form a basis for null(AT) = W⊥ ! This is
because R = EA, so RT = AT ET , which implies that AT vi = ~0 for every i. But E is invertible, so ET

is invertible, so the vi are linearly independent. But! k = thenumber of ~0-rows of R = (# of rows of
R) - (# of non-~0 rows of R = (# rows of A) - (row rank of A) =(# columns of AT) - (rank of AT) =
nullity of AT , so v1, . . . vk are in null(AT), are linearly independent, and there are as many of them as
there is for a basis for null(AT), so they form a basis for null(AT) !

That deserves repeating!

A~x = ~b is consistent ⇔ ~b is ⊥ to a basis for col(A) = (null(A))⊥. We can build such a basis by row
reducing the superaugmented matrix (A|I) to R|E. The (transposes of the) rows of E opposite the ~0
rows of R form the basis.

Orthogonal Projections.

Any vector v ∈ V can be written, uniquely, as v = w + w⊥, for w ∈ W and w⊥ ∈ W⊥ ; the uniqueness
comes from the result above about intersections. That it can be written that way at all comes from
orthogonal projections.
We’ve seen that if w1, . . . , wk is an orthogonal basis for a subspace W of R

n, and w ∈ W , then w =
< w1, w >

< w1, w1 >
w1 + . . . +

< wk, w >

< wk−1, wk >
wk

On the other hand, if v ∈ V , we can define the orthogonal projection

projW (v) =
< w1, v >

< w1, w1 >
w1 + . . . +

< wk, v >

< wk, wk >
wk

of v into W . This vector is in W , and we can show that v − projW (v) is orthogonal to all of the
wi, so it is orthogonal to every linear combination, i.e., it is orthogonal to every vector in W . So
v − projW (v) = w′ ∈ W⊥

In the case that the wi are not just orthogonal but also orthnormal, we can simplify this somewhat:
projW (v) = < w1, v > w1 + · · ·+ < wn, v > wn = (w1w

T
1 + · · · + wnwT

n)v = Pv ,
where P = (w1w

T
1 + · · · + wnwT

n) is the projection matrix giving us orthogonal projection.

If all we have is a basis for W , we can use the formula developed at the comment ”But! ” below (short

form: the projection is A~x where AT A~x = AT~b, where W = col(A)).

For any subspace W ⊆ R
n, dim(W)+dim(W⊥) = n = dim(Rn) . Even more, a basis for W and a basis

for W⊥ together form a basis for R
n.

All that we need now is a method for building orthogonal bases for subspaces! (See also the formulation
for the orthogonal projection which requires only a basis for W , later in these notes.)

Gram-Schmidt Orthogonalization.

Given a basis v1, . . . , vn for a subspace W , we can build an orthogonal basis for W by, essentially,
repeatedly subtracting from wi its orthogonal projection onto the span of the orthogonal vectors we
have built up to that point.
To do so we repeatedly use the formula

(*) projWi
(v) =

< w1, v >

< w1, w1 >
w1 + . . . +

< wi, v >

< wi, wi >
wi

for the projection of a vectors onto the span Wi of a collection of orthogonal vectors. Gram-Schmidt or-
thogonalization consists of repeatedly using this formula to replace a collection of vectors with ones that

2

are orthogonal to one another, without changing their span. Starting with a collection {v1, . . . , vn}
of vectors in V ,

let w1 = v1, then let w2 = v2 −
< w1, v2 >

< w1, w1 >
w1 .

Then w1 and w2 are orthogonal, and since w2 is a linear combination of w1 = v1 and v2, while the above
equation can also be rewritten to give v2 as a linaear combination of w1 and w2, the span is unchanged.
Continuing,

let w3 = v3 −
< w1, v3 >

< w1, w1 >
w1 −

< w2, v3 >

< w2, w2 >
w2 ; then since w1 and w2 are orthogonal, it is not hard to

check that w3 is orthogonal to both of them, and using the same argument, the span is unchanged (in
this case, span{w1, w2, w3} =span{w1, w2, v3}=span{v1, v2, v3}).

Continuing this, we let wk = vk −
< w1, vk >

< w1, w1 >
w1 − . . . −

< wk−1, vk >

< wk−1, wk−1 >
wk−1

Doing this all the way to n will replace v1, . . . , vn with orthogonal vectors w1, . . . , wn, without changing
the span.

One thing worth noting is that the if two vectors are orthogonal, then any scalar multiples of them are,
too. This means that if the coordinates of one of our wk are not to our satisfaction (having an ugly
denomenator, perhaps), we can scale it to change the coordinates to something more pleasant. It is
interesting to note that in so doing, the the later vectors wk are unchanged, since our scalar, can be
pulled out of both the top inner product and the bottom one in later calculations, and cancelled.

Once we know how to build an orthogonal basis for a subspace W , we know how to compute the
orthogonal projection of a vector onto W ; we use the formula (*) above. This in turn allows to compute
the decomposition of any vector ~v ∈ R

n as ~v = ~w + ~w′ with ~w ∈ W and ~w′ ∈ W⊥; ~w = projW (~v) and
~w′ = ~v − ~w.

This in turn gives us the tools to establish some basic facts:

(W⊥)⊥ = W , since if ~w ∈ W , then ~w ⊥ ~v for every ~v ∈ W⊥, so w ∈ (W⊥)⊥, while if ~v ∈ (W⊥)⊥, then
writing ~v = ~w+ ~w′ as above, we have ~v− ~w ∈ (W⊥)⊥, so 0 =< ~v− ~w, ~w′ >=< ~v− ~w,~v− ~w >= ||~v− ~w||2,
so ~v − ~w = ~0, so ~v = ~w ∈ W .

If W ⊆ R
n is a subspace, then dim(W) + dim(W⊥) = n; this is because we can express W = col(A) for

some matrix A (having columns a spanning set for W), and then W⊥ = null(AT), so

dim(W)+dim(W⊥) = rank(A)+nullity(AT) = rowrank(A)+nullity(AT) = rank(AT)+nullity(AT) =(#
of pivots for AT) + (# free variables for AT) =# of columns of AT = # of rows of A = n.

Even more, any basis for W , together with a basis for W⊥, forms a basis for R
n. This is because such

a collection of vectors will form n vectors in R
n and will be linearly independent. This is because if we

express ~0 as a linear combination of them, we can rearrange terms so that a linear combination of the
W -vectors equals a linear combination of the W⊥-vectors. This vector lies in W ∩ W⊥ = {~0}, so since
each basis is linearly independent, both sets of coefficients are 0.

Best approximations.

In the real world, the coefficients and target vector of a system of linear equations are only known up
to some (measurement) error. But if the rank of the matrix is too small (e.g., we have more variables
than equations), small changes in values can easily lead to an inconsistent system. In other words, our

target, ~b might end up lying close to, but not in, the column space col(A), of our coefficient matrix.

The appropriate solution, then, is to find the value of A~x, closest to ~b, and treat ~x as our “solution” to
the inconsisent system A~x = ~b.

How? Minimize ||A~x − ~b||2, i.e., minimize ~w − ~b for ~w ∈ col(A). If we use an orthonormal basis

{~w1, . . . , ~wk} for col(A), then < (Σxi ~wi) − ~b, (Σxi ~wi) − ~b >=< ~b,~b > +Σ(x2
i − 2xi < ~wi,~b >) is

minimized when (the gradient of this function of the xi is 0, i.e.) xi =< ~wi,~b > for each i, so the vector

~w closest to ~b is Σ < ~wi,~b > ~wi = projcol(A)(~b), i.e., the orthogonal projection of ~b to the column space
of A.

3

But! we don’t need to build an orthogonal basis for col(A) in order to compute this; ~w = projcol(A)(~b)

is the (unique) vector ~w ∈ col(A) such that ~w −~b ∈ (col(A))⊥ = null(AT), so we need to find ~w = A~x

so that AT (A~x −~b) = ~0, i.e., (AT A)~x = AT~b.

This linear system is consistent (we know that the needed A~x exists); solving the system for ~x gives us

the vector A~x = projcol(A)(~b), and so gives us a method for computing the orthogonal projection onto
any subspace (that we have a spanning set for), without needing to compute an orthogonal basis for it

first. A~x = ~w is also the closest vector to ~b for which A~x = ~w is consistent; ~x is called the least squares

solution to the inconsistent system A~x = ~b.

Note: if AT A is invertible (need: r(A)=number of columnsof A), then we can write ~x = (AT A)−1(AT~b);

A~x = A(AT A)−1(AT~b). The gives us a general formula for the orthogonal projection onto a subspace
W ; projW (v) = A(AT A)−1(AT~v), where the columns of A form a basis for W .

Regression Lines.

We can apply this technology to produce a method for finding the “best fit” line to a collection of
data. Suppose we have a collection (x1, y1), . . . , (xn, yn) of data points, and we wish to find the line
L(x) = y = ax + b that best fits the data. Typically, this means that we want, on average, that
the deviation between yi and L(xi) to be as small as possible. In practice, what we minimize is the
distance between the “value vector”, [y1, . . . , yn]T and the “predicted vector” [ax1 + b, . . . , axn + b]T .
Our unknowns are a, b, and our predicted vector can be expressed as a matrix product,




ax1 + b
...

axn + b



 =





x1 1
...

...
xn 1





[

a
b

]

= A

[

a
b

]

=







y1
...

yn






= ~y

So we want the vector [a, b]T so that A[a, b]T is closest to ~y. But this is precisely the situation we just
worked through; the slope (a) and intercept (b) of the best-fitting line are the solution to the system

AT A

[

a
b

]

= AT ~y, which works out to

[

Σx2
i Σxi

Σxi n

] [

a
b

]

=

[

Σxiyi

Σyi

]

(although we need not remember

that....). The 2 × 2 matrix AT A is invertible, unless all of the xi are equal to one another.

We can do this sort of thing more generally, too. We can find the best-fitting quadratic Q(x) = y =
ax2 + bx+ c, or cubic C(x) = y = ax3 + bx2 + cx+d, or any polynomial, using the same basic approach.
Let’s illustrate this with a quadratic. As with linear regression, we wish to make the sum of the terms

[yi − (ax2
i + bxi + c)]2 as small as possible, which means that we wish to make A





a
b
c



 as close to







y1
...

yn






= ~y as we can, where now

A =







x2
1 x1 1
...

...
x2

n xn 1






. This, again, has solution





a
b
c



 = (AT A)−1AT ~y. AT A is invertible so long as at

least three of the xi are distinct. This last fact follows from a fact about the Vandermonde determinant,
which is the determinant of the matrix






xn−1
1 . . . x1 1
...

...
xn−1

n . . . xn 1






,

and which equals the product of all of the differences xi − xj taken over pairs i < j. The determinant
is therefore non-zero if all of the xi are distinct, which means that the last k + 1 columns (which are
what we use for a degree k polynomial fitting) are linearly independent if at least k + 1 of the xi are
distinct.

4

Practice problems for the Final Exam

A.1. (20 pts.) Find the inverse of the matrix A =





2 3 2
3 2 −1
1 2 2



 .

A.2. (15 pts.) Determine whether or not the vectors






1
1
5
0






,







1
3
−3
1






,







−1
−1
−1
3






,







0
1
2
5







are linearly independent.

A.3. (20 pts.) Find an orthogonal basis for the column space of the matrix

A =







1 1 0
1 0 1
0 1 1
1 1 1







A.4. (20 pts.) Find the least squares regression line which best approximates the data points

(0, 1), (1, 0), (2, 3), (3, 5)

B.1. (15 pts.) Find the orthogonal projection of the vector ~b =





1
2
4



 onto the column space of the matrix

A =





2 2
3 1
1 1





B.2. (15 pts.) If T : R
3 → R

2 is a linear transformation with

T





1
2
0



 =

[

1
1

]

, T





1
1
1



 =

[

3
4

]

, and T





0
1
2



 =

[

−1
2

]

,

what is T





1
2
3



 ?

B.3. (15 pts.) For which values of x is the matrix A =





2 1 3
1 2 x
x 1 −1



 not invertible?

B.4. (15 pts.) Suppose that A is an invertible n × n matrix. Show that if A is diagonalizable then A−1 is
diagonalizable, as well.

5

Things we know how to do

◦ Solve a system of equations A~x = ~b using Gaussian elimination.

◦ Show that a linear system has no solutions, one solution, many solutions (check for consistency, count
free variables).

◦ Compute the rank and nullity of a matrix.

◦ Show that a collection of vectors in R
n span R

n (pivot in every row), show they are linearly independent
(no free variables).

◦ Balance a chemical equation.

◦ Compute the net flow through a network, by monitoring (i.e., knowing the value at) some of the edges.

◦ Show that a matrix is invertible.

◦ Write an (invertible) matrix as a product of elementary matrices (by keeping track of the row operations
in reducing it to the identity matrix).

◦ Compute the inverse of a matrix A (using a super-augmented matrix).

◦ Determine if a collection of vectors form a subspace (check closure under addition, scalar multiplication).

◦ Interpret linear systems in terms of column and nullspaces (column = who has solutions, null = how
many).

◦ Find bases for column space, row space, nullspace (row reduce!).

◦ Find the coordinates of a vector with respect to a basis for a subspace.

◦ Start with linearly independent vectors in a subpace, extend to a basis (add a basis at the end, then
row reduce, keep the columns corresponding to pivots).

◦ Start with a spanning set for a subspace, choose a basis (row reduce, keep columns corresponding to
pivots).

◦ Compute the matrix for a linear transformation; compute the image of a vector under a transformation.

◦ Compute the transition matrix of a Markov chain; find the steady state solution for the modeled system
(via eignvector/eigenvalue).

◦ Compute the number of paths between a pair of vertices in a (undirected/directed) graph (by taking
powers of its adjacency matrix).

◦ Compute the determinant of a matrix (by row reduction, or by expanding along row/column).

◦ Compute the solution to a system of equations A~x = ~b with A invertible (by inverting! or Cramer’s
rule). Compute the inverse of a matrix (using minors).

◦ Compute the characteristic polynomial of a matrix.

◦ Compute the eigenvalues and bases of eigenspaces for a matrix.

◦ Diagnonalize a matrix, or show that it cannot be done (geometric vs. algebraic multiplicity). Use
diagonalization to compute “high” powers of a matrix.

◦ Show two matrices aren’t similar (by showing they have different eigenvalues, or characteristic polyno-
mials, or geometric multiplicities).

◦ Build a basis for the orthogonal complement of a subspace (described as span? (col(A))⊥ = null(AT).
described as nullspace? (null(A))⊥ = row(A).)

◦ Use (col(A))⊥ = null(AT) to build a test for consistency of a system A~x = ~b (~b must be ⊥ every vector
in a basis for null(AT)).

◦ Build an orthogonal (orthonormal) basis for a subspace (start with a basis, and apply Gram-Schmidt).

◦ Compute the orthogonal projection of a vector to a subspace (build an orthogonal basis, and sum the
projections onto each basis vector [or see below!]).

◦ Decompose a vector ~v into the sum of a vector ~w ∈ W and ~w′ ∈ W⊥.

◦ Find the vector in col(A) closest to ~b, i.e., find ~x so that ‖A~x − ~b‖ is as small as possible (solve

AT A~x = AT~b, take A~x). [This is the same as taking the orthogonal projection of ~b onto col(A).]

◦ Find the line which best fits a collection of data points.

◦ Find the degree k polynomial whose graph best fits a collection of data points.

6

