




























Math 314 Matrix Theory

Exam 2 Solutions

Show all work. How you get your answer is just as important, if not more important, than
the answer itself. If you think it, write it!

1. (20 pts.) For which value(s) of x is the matrix A =





1 2 1
2 x 2
1 1 x



 not invertible?

We can row reduce the matrix, and look for a column without a pivot (for some values
of x):

A =





1 2 1
2 x 2
1 1 x



 −→





1 2 1
0 x− 4 0
0 −1 x− 1



 −→





1 2 1
0 −1 x− 1
0 x− 4 0





−→





1 2 1
0 1 1− x
0 x− 4 0



 −→





1 2 1
0 1 1− x
0 0 (1− x)(4− x)





This has three pivots, unless (1− x)(4− x) = 0, that is, unless x = 1 or x = 4. So for
these values of x the matrix will not be invertible; for any other value of x is will be
invertible.

Or: we can use the fact that A is invertible ⇔ det(A) 6= 0. So we compute:

det(A) = (1)det

(

x 2
1 x

)

− (2)det

(

2 2
1 x

)

+ (1)det

(

2 x
1 1

)

=

(1)(x2 − 2)− (2)(2x− 2) + (1)(2− x) = x2 − 2− 4x+ 4 + 2− x = x2 − 5x+ 4,
so A is not invertible precisely when x2 − 5x+ 4 = 0.

But since x2 − 5x + 4 = (x − 1)(x − 4) = 0 for x = 1 and x = 4, we have A is not
invertible precisely when x = 1 or x = 4.

2. (20 pts.) Does the collection of vectors

W =
{







x
y
z
w






: x− 2y + 4z + 3w = 0

}

form a vector space (using the usual addition and scalar multiplication of vectors)?
Explain why or why not.

We can approach this two ways: the short way is to note that W is the nullspace of
the matrix ( 1 −2 4 3 ), and a nullspace is a subspace (of R4), and so is a vector
space. Or we do it the longer way:
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If







x
y
z
w






and







a
b
c
d






are both inW , then x−2y+4z+3w = 0 and a−2b+4c+3d = 0, so

(x+a)−2(y+b)+4(z+c)+3(w+d) = (x−2y+4z+3w)+(a−2b+4c+3d) = 0+0 = 0,

so







x+ a
y + b
z + c
w + d






=







x
y
z
w






+







a
b
c
d






is in W , and so W is closed under vector addition.

Similarly, if







x
y
z
w






is in W and c ∈ R, then

(cx)− 2(cy) + 4(cz) + 3(cw) = c(x− 2y + 4z + 3w) = c(0) = 0, so







cx
cy
cz
cw






= c







x
y
z
w







is in W , and so W is closed under scalar multiplication.

Since W is closed under both vector addition and scalar multiplication, W is a sub-
space of R4, and so is a vector space.

3. (25 pts.) Use a superaugmented matrix to express the column space of the matrix

A =





1 2 4
2 1 5
2 2 6





as the nullspace of another matrix B, and use this to decide if the systems of equations
A~x = ~b are consistent, for the vectors ~b equal to





1
2
3



 ,





1
5
4



 , and





3
2
1



 .

We start by row reducing (A|I3):

A =





1 2 4 | 1 0 0
2 1 5 | 0 1 0
2 2 6 | 0 0 1



 −→





1 2 4 | 1 0 0
0 −3 −3 | −2 1 0
0 −2 −2 | −2 0 1





−→





1 2 4 | 1 0 0
0 1 1 | 2/3 −1/3 0
0 −2 −2 | −2 0 1



 −→





1 2 4 | 1 0 0
0 1 1 | 2/3 −1/3 0
0 0 0 | −2/3 −2/3 1





−→





1 2 4 | 1 0 0
0 1 1 | 2/3 −1/3 0
0 0 0 | −2 −2 3





This tells us that





a
b
c



 will give a consistent system of equations precisely when
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( −2 −2 3 )





a
b
c



 = (−2a− 2b+ 3c) = (0),

i.e.,





a
b
c



 is in the nullspace of B = ( −2 −2 3 ).

So the column space of A is the nullspace of B = ( −2 −2 3 ).

Using this, we can test the three vectors we were given:

( −2 −2 3 )





1
2
3



 = −2− 4 + 9 = −6 + 9 = 3 6= 0,
so this does not give a consistent system of equations.

( −2 −2 3 )





1
5
4



 = −2− 10 + 12 = −12 + 12 = 0,
so this gives a consistent system of equations.

( −2 −2 3 )





3
2
1



 = −6− 4 + 3 = −10 + 3 = −7 6= 0,
so this does not give a consistent system of equations.

4. (25 pts.) Find a collection from among the vectors




1
2
3



 ,





2
1
1



 ,





2
2
3



 ,





3
1
2





that forms a basis for R3, and express the remaining vectors as linear combinations
of your chosen basis vectors.

[Hint: your work for the first part should tell you how to answer the second part!]

To find a basis, we need linear independence and spanning R3, so we put the vectors
together in a matrix and row reduce!

A =





1 2 2 3
2 1 2 1
3 1 3 2



 −→





1 2 2 3
0 −3 −2 −5
0 −5 −3 −7



 −→





1 2 2 3
0 1 2/3 5/3
0 −5 −3 −7





−→





1 2 2 3
0 1 2/3 5/3
0 0 1/3 4/3



 −→





1 2 2 3
0 1 2/3 5/3
0 0 1 4





So in row echelon form, there are pivots in the first three columns, so those three
columns of A are linearly independent. They also span (a pivot in every row, or 3
linearly independent vectors in R3 !), so the first three columns form a basis for R3.
To write the remaining vector as a linear combination, we can note that we have done
most of the work of solving the needed linear system; just insert a vertical bar before
the fourth column!




1 2 2 | 3
2 1 2 | 1
3 1 3 | 2



 −→





1 2 2 | 3
0 1 2/3 | 5/3
0 0 1 | 4



 −→





1 2 2 | 3
0 1 0 | −1
0 0 1 | 4




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−→





1 2 0 | −5
0 1 0 | −1
0 0 1 | 4



 −→





1 0 0 | −3
0 1 0 | −1
0 0 1 | 4





which tells us that





3
1
2



 = (−3)





1
2
3



+ (−1)





2
1
1



+ (4)





2
2
3



 .

Another approach, which many of you followed, is to find a basis for the nullspace of
this matrix A. From the RREF, we have x1−3x4 = 0, x2−x4 = 0, and x3+4x4 = 0,
so






x1

x2

x3

x4






=







3x4

x4

−4x4

x4






= x4







3
1
−4
1






, so







3
1
−4
1






is a basis for the nullspace of A. But

this means that

(3)





1
2
3



+ (1)





2
1
1



+ (−4)





2
2
3



+ (1)





3
1
2



 = ~0,

which means that





3
1
2



 = (−3)





1
2
3



+ (−1)





2
1
1



+ (4)





2
2
3



 .

5. (10 pts.) Show why if A and B are matrices so that AB makes sense, and the
matrix AB has linearly independent columns, then B must have linearly independent
columns.

[Hint: What does the conclusion, about B, say about systems of linear equations?]

We want to say that B has linearly independent columns, which means that the
only linear combination of the columns that equals the vector ~0 is the all-0 linear
combination. In matrix terms, if B~x = ~0, then we must have ~x = ~0.

But if we then suppose that B~x = ~0, then A(B~x) = A~0 = ~0. But A(B~x) = (AB)~x,
and so we know that (AB)~x = ~0. But the columns of AB are linearly independent!,
and so the same line of reasoning shows that we must have ~x = ~0.

So, if B~x = ~0 then ((AB)~x = ~0, and so) ~x = ~0, showing that the columns ob B are
linearly independent.

An alternate approach, taken by some, is to think of matrix multplication as a linear
transformation TA, etc., and note that TAB = TA ◦ TB . Having linearly independent
columns amounts (by essentially the same reasoning as above) to saying that TAB is
a one-to-one function [TAB(~x) = TAB(~y) means TAB(~x − ~y) = ~0, so ~x − ~y = ~0, so
~x = ~y.] But if TB is not one-to-one, then TA ◦ TB cannot be; TB(~x) = TB(~y) means
that TAB(~x) = TA(TB(~x)) = TA(TB(~y)) = TAB(~y). So TAB one-to-one implies that
TB must be one-t-one, so B has linearly independent columns.
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