
Math 314 Topics for the second exam

Technically, everything covered by the first exam plus

Inverses.

Some conditions for/consequences of invertibility:
the following are all equivalent (A = n-by-n matrix).

0. A is invertible, 1. The RREF of A is In.
2. A has n pivots. 3. The equation A~x = ~0 has only the solution x=0.
4. The columnsof A are linearly independent. 5. TA(~x) = A~x is one-to-one.

6. Every linear system A~x = ~b has a solution. 7. The columns of A span R
n.

8. TA(~x) = A~x is onto. 9. There is a matrix C with CA = In.
10. There is a matrix B with AB = In. 11. AT is invertible,
12. For one choice of ~b, A~x = ~b has a unique solution.
13. For every choice of ~b, A~x = ~b has a unique solution.

The equivalence of 3. and 13. is sometimes stated as Fredholm’s alternative: Either every equation A~x = ~b
has a unique solution, or the equation A~x = ~0 has a non-trivial solution (and only one of the alternatives
can occur).

Determinants.

(Square) matrices come in two flavors: invertible (all Ax = b have a solution) and non-invertible (Ax = ~0 has
a non-trivial solution). It is an amazing fact that one number identifies this difference; the determinant of A.

For 2×2 matrices A =

(

a b
c d

)

, this number is det(A)=ad−bc; if 6= 0, A is invertible, if =0, A is non-invertible

(=singular).
For larger matrices, there is a similar (but more complicated formula):
A= n× n matrix, Mij(A) = matrix obtained by removing ith row and jth column of A.
det(A) = Σn

i=1(−1)i+1ai1det(Mi1(A))
(this is called expanding along the first column)

Amazing properties:
If A is upper triangular, then det(A) = product of the entries on the diagonal
If you multiply a row of A by c to get B, then det(B) = cdet(A)
If you add a mult of one row of A to another to get B, then det(B) = det(A)
If you switch a pair of rows of A to get B, then det(B) = −det(A)

In other words, we can understand exactly how each elementary row operation affects the determinant. In
part, A is invertible iff det(A) 6= 0.

In fact, we can use row operations to calculate det(A) (since the RREF of a matrix is upper triangular). We
just need to keep track of the row operations we perform, and compensate for the changes in the determinant;
det(A) = (1/c)det(Ei(c)A) , det(A) = (−1)det(EijA)

More interesting facts:
det(AB) = det(A)det(B) ; det(AT ) = det(A) ; det(A−1) = [det(A)]−1

We can expand along other columns than the first: for any fixed value of j (= column),
det(A) = Σn

i=1(−1)i+jaijdet(Mij(A))
(expanding along jth column)
And since det(AT ) = det(A), we could expand along rows, as well.... for any fixed i (= row),
det(A) = Σn

j=1(−1)i+jaijdet(Mij(A))

Vector Spaces.

Basic idea: a vector space V is a collection of things you can add together, and multiply by scalars (= numbers)
V = things for which v,w ∈ V implies v + v ∈ V ; a ∈ R and v ∈ V implies a · v ∈ V

E.g., V=R
2, add and scalar multiply componentwise
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V=all 3-by-2 matrices, add and scalar multiply entrywise
P2={ax2 + bx+ c : a, b, c ∈ R} = polynomials of degree ≤2; add, scalar multiply as functions
More generally: Pn = {all polynomials of degree ≤ n} is a vector space

The standard vector space of dimension n : Rn = {(x1, . . . , xn) : xi ∈ R all i}

An abstract vector space is a set V together with some notion of addition and scalar multiplication, satisfying
the ‘usual rules’: for u, v,w ∈ V and c, d ∈ R we have

u+ v ∈ V , cu ∈ V
u+ v = v + u, u+ (v + w) = (u+ v) + w
There is ~0 ∈ V and −u ∈ V with ~0 + u = u all u, and u+ (−u) = ~0
c(u+ v) = cu+ cv, (c+ d)u = cu+ du, (cd)u = c(du), 1u = u

Examples: Rm,n = all m× n matrices, under matrix addition/scalar mult
C[a, b] = all continuous functions f :[a, b]→ R, under function addition
{A ∈ R

n,n : AT = A} = all symmetric matrices, is a vector space

Note: {f ∈ C[a, b] : f(a) = 1} is not a vector space (e.g., has no ~0)
Basic facts:
0v = ~0, c~0 = ~0, (−c)v = −(cv); cv = ~0 implies c = 0 or v = ~0
A vector space (=VS) has only one ~0; a vector has only one additive inverse

Linear operators/transformations:
T : V → W is a linear operator if T (cu+ dv) = cT (u) + dT (v) for all c, d ∈ R, u, v ∈ V
Example: TA : Rn → R

m, TA(v) = Av, is linear
T : C[a, b] → R, T (f) = f(b), is linear

T : R2 → R, T (x, y) = x− xy + 3y is not linear!

Subspaces
Basic idea: V = vector space, W ⊆ V , then to check if W is a vector space, using the same addition and
scalar multiplication as V , we need only check two things:

whenever c ∈ R and u, v ∈ W , we always have cu, u + v ∈ W (W is “closed” under addition and scalar
multiplication).

All other properties come for free, since they are true for V !
If V is a VS, W ⊆ V and W is a VS using the same operations as V , we say that W is a (vector) subspace of
V .

Examples: {(x, y, z) ∈ R
3 : z = 0} is a subspace of R3

{(x, y, z) ∈ R
3 : z = 1} is not a subspace of R3

{A ∈ R
n,n : AT = A} is a subspace of Rn,n

Basic construction: v1, · · · , vn ∈ V
W = {a1v1 + · · · anvn : a1, . . . , an ∈ R = all linear combinations of v1, · · · , vn = span{v1, · · · , vn} = the span
of v1, · · · , vn , is a subspace of V

Basic fact: if w1, . . . , wk ∈ span{v1, · · · , vn}, then span{w1, · · · , wk} ⊆ span{v1, · · · , vn}

Subspaces from matrices
column space of A = C(A) = span{the columns of A}
row space of A = R(A) = span{(transposes of the ) rows of A}
nullspace of A = N (A) = {x ∈ R

n : Ax = ~0}

(Check: N (A) is a subspace!)

Alternative view Ax = lin comb of columns of A, so is in col(A); in fact, col(A) = {Ax : x ∈ R
n}. So

col(A) is the set of vectors b for which Ax = b has a solution. Any two solutions Ax = b = Ay have
A(x − y) = AX − Ay = b − b = 0, so x − y is in null(A). So the collection of all solutions to AX = b are
(particular solution)+(vector in null(A)). So col(A) tells is which SLEs have solutions, and null(A) tells us
how many solutions there are.

The descriptions of C(A) and N (A) are fundamentally different; C(A) tells us how to (quickly) build elements
of the subspace, while N (A) tells us how to (quickly) decide if a vector is in the subspace. As written, doing
the other thing for the other subspace requires ‘work’ (that is, row reduction!). But we can (by row reduction)
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describe each subspace in terms matching the other, to make the corresponding task - building versus deciding
- quick, as well.

To view N (A) as a column space, row reduce A! In RREF, we can write the solutions to A~x = ~0 as a linear
combination of vectors, one for each free variable, by solving for each pivot variable in terms of the free ones.
These vectors then span N (A); writing them as the columns of a matrix B, we have N (A) = C(B).

To view C(A) as a nullspace, row reduce the super-augmented matrix (A|In) → (R|B). From our inverse work,

we know that BA = R. So (A|~b) row reduces to (R|B~b). In RREF, the rows ri of B opposite the rows of

0’s in R tell us that for (A|~b) to be consistent we must have (ri)~b = 0 for each i. Assembling these ri into a

matrix, Q, we then have that ~b ∈ C(A) precisely when Q~b = ~0, i.e., ~b ∈ N (Q). So C(A) = N (Q) !

Subspaces from linear operators: T : V → W
image of T = im(T ) = {Tv : v ∈ V }
kernel of T = ker(T ) = {x : T (x) = ~0}

When T = TA, im(T ) = C(A), and ker(T ) = N (A)

T is called one-to-one if Tu = Tv implies u = v
Basic fact: T is one-to-one if and only if ker(T ) = {~0}

Bases, dimension, and rank

A basis for a subspace W of V is a set of vectors v1, . . . , vn ∈ W so that (a) they are linearly independent,
and (b) W=span{v1, . . . , vn} .
Example: The vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) are a basis for R

n, the
standard basis.

The idea: a basis allows you to express every vector in the subspace as a linear combination in exactly one
way.

A system of equations Ax = b has a solution iff b ∈col(A) .

If Ax0 = b, then every other solution to Ax = b is x = x0 + z, where z ∈null(A) .

The row, column, and nullspaces of a matrix A are therefore useful spaces (they tell us useful things about
solutions to the corresponding linear system), so it is useful to have bases for them.

Finding a basis for the row space.
Basic idea: if B is obtained from A by elementary row operations, then row(A) =row(B).
So of R is the reduced row echelon form of A, row(R) =row(A)
But a basis for row(R) is quick to identify; take all of the non-zero rows of R ! (The zero rows are clearly
redundant.) These rows are linearly independent, since each has a ‘special coordinate’ where, among the rows,
only it is non-zero. That coordinate is the pivot in that row. So in any linear combination of rows, only that
vector can contribute something non-zero to that coordinate. Consequently, in any linear combination, that
coordinate is the coefficient of our vector! So, if the lin comb is ~0, the coefficient of our vector (i.e., of each
vector!) is 0.

Put bluntly, to find a basis for row(A), row reduce A, to R; the (transposes of) the non-zero rows of R form
a basis for row(A).

This in turn gives a way to find a basis for col(A), since col(A) =row(AT ) !

To find a basis for col(A), take AT , row reduce it to S; the (transposes of) the non-zero rows of S form a basis
for row(AT ) =col(A) .

This is probably in fact the most useful basis for col(A), since each basis vector has that special coordinate.
This makes it very quick to decide if, for any given vector b, Ax = b has a solution. You need to decide if b
can be written as a linear combination of your basis vectors; but each coefficient will be the coordinate of b
lying at the special coordinate of each vector. Then just check to see if that linear combination of your basis
vectors adds up to b !

There is another, perhaps less useful, but faster way to build a basis for col(A); row reduce A to R, locate the
pivots in R, and take the columns of A (Note: A, not R !) that correspond to the columns containing the
pivots. These form a (different) basis for col(A).
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Why? Imagine building a matrix B out of just the pivot columns. Then in row reduced form there is a pivot
in every column. Solving Bv = ~0 in the case that there are no free variables, we get v = ~0, so the columns are
linearly independent. If we now add a free column to B to get C, we get the same collection of pivots, so our
added column represents a free variable. Then there are non-trivial solutions to Cv = ~0, so the columns of C
are not linearly independent. This means that the added columns can be expressed as a linear combination
of the bound columns. This is true for all free columns, so the bound columns span col(A).

Finally, there is the nullspace null(A). To find a basis for null(A):

Row reduce A to R, and use each row of R to solve Rx = ~0 by expressing each bound variable in terms of the
frees. collect the coefficients together and write x = xi1v1 + · · · + xikvk where the xij are the free variables.
Then the vectors v1, . . . , vk form a basis for null(A).

Why? By construction they span null(A); and just as with our row space procedure, each has a special
coordinate where only it is not 0 (the coordinate corresponding to the free variable!).

More on Bases.

To find a basis: start with a collection of vectors that span, and repeatedly throw out redundant vectors (so
you don’t change the span) until the ones that are left are linearly independent. Note: each time you throw
one out, you need to ask: are the remaining ones lin indep?

Basic fact: If v1, . . . , vn is a basis for V , then every v ∈ V can be expressed as a linear combination of the vi’s
in exactly one way. If v = a1v1 + · · · + anvn, we call the ai the coordinates of v with respect to the basis
v1, . . . , vn . We can then think of v as the vector (a1, . . . an)

T = the coordinates of v with respect to the basis
v1, . . . , vn, so we can think of V as “really” being R

n.

The Basis Theorem: Any two bases of the same vector space contain the same number of vectors. (This
common number is called the dimension of V , denoted dim(V ) .)
Reason: if v1, . . . , vn is a basis for V and w1, . . . , wk ∈ V are linearly independent, then k ≤ n

As part of that proof, we also learned:
If v1, . . . , vn is a basis for V and w1, . . . , wk are linearly independent, then the spanning set v1, . . . , vn, w1, . . . , wk

for V can be thinned down to a basis for V by throwing away vi’s .

In reverse: we can take any linearly independent set of vectors in V , and add to it from any basis for V , to
produce a new basis for V .

Some consequences:
If dim(V )=n, and W ⊆ V is a subspace of V , then dim(W )≤ n

If dim(V )=n and v1, . . . , vn ∈ V are linearly independent, then they also span V
If dim(V )=n and v1, . . . , vn ∈ V span V , then they are also linearly independent.

Rank of a matrix = r(A) = number of non-zero rows in RREF = number of pivots in RREF = dim(col(A)).
Nullity of a matrix = n(A) = number of columns without a pivot = # columns − # pivots = dim(null(A))
rank = number of bound variables, nullity = number of free variables
rank ≤ number of rows, number of columns (at most one pivot per row/column!)

Note: since the number of vectors in the bases for row(A) and col(A) is the same as the number of pivots ( =
number of nonzero rows in the RREF) = rank of A, we have dim(row(A))=dim(col(A))=r(A).
And since the number of vectors in the basis for null(A) is the same as the number of free variables for A ( =
the number of columns without a pivot) = nullity of A (hence the name!), we have dim(null(A)) = n(A) =
n− r(A) (where n=number of columns of A).
So, dim(col(A)) + dim(null(A)) = the number of columns of A .
rank + nullity = number of columns = number of variables

Using coordinates, we can treat any vector space as Rk for some k, and so carry out these kinds of computations
- find a basis inside a spanning set, test for linear independence, test for spanning, extend a linearly independent
set to a basis, etc. For example, since the polynomials {1, x, x2, x3, x4} are a basis for P4, we can test the
linear independence of {x+ 2, x2 − x− 3, 2x2 + x} (they aren’t) by testing their coordinate vectors.
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