
The Fibonacci sequence

The Fibonacci sequence is perhaps the most famous sequence of numbers in history;
it starts as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

We will call them Fi, with F0 = 0 and F1 = 1. The basic pattern in the sequence is
Fn+1 = Fn + Fn−1; each succeeding term is the sum of the previous two. The sequence
originated with a thought experiment on the breeding of rabbits; the idea was that a rabbit
can give birth when mature, after one year, and every year after, and so the population
growth (Fn+1−Fn) is equal to the number of mature rabbits (Fn−1). It has since been found
in an immmense number of situations, so much so that there is an entire mathematical
journal devoted to the study of this sequence and the ideas that come from it.

But we can find a formula for Fn by turning this into a matrix multiplication problem!
If we keep track of two terms of the sequence at a time, this is enough to determine the
next term; in matrix terms,
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and repeating this argument yields
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So “all” the we need in order to have a formula for Fn is to know what
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But we can do this, by diagonalizing:
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This means that, as we have seen in class,
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Computing the inverse, multiplying out, grabbing the first entry, and cleaning the resulting
formula up a bit, this yields the formula
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(It helps in the cleaning up process to note that
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As a practical matter, it is also worth noting that | 1−
√
5

2
| < 0.7, and so (

1−
√
5

2
)n

tends to 0 very quickly. So, for n ≥ 2,
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