M340L Matrices, Old! Exam 2

Name:

Show all work.

4. (15 pts.) Let V=R³ (3-dimensional Euclidean space) and let $W = \{(x, y, z) \in \mathbf{R}^3 : 2x + 3y + 8z = 0\}.$

Show that W is a **subspace** of V.

5. (10 pts.) Suppose $L: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation, and suppose

$$L\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}2\\1\end{pmatrix}, \quad L\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}1\\2\end{pmatrix}, \quad \text{and} \quad L\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}-1\\3\end{pmatrix} \quad \text{What is } L\begin{pmatrix}2\\-1\\3\end{pmatrix}?$$

2. The system of equations

$$\begin{pmatrix} 1 & 1 & 1 & 1 & | & 1 & 0 & 0 & 0 \\ 2 & 2 & 3 & 4 & | & 0 & 1 & 0 & 0 \\ 3 & 3 & -1 & -6 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & 2 & 3 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$
row-reduces to
$$\begin{pmatrix} 1 & 1 & 0 & 0 & | & 14 & -5 & -1 & 0 \\ 0 & 0 & 1 & 0 & | & -24 & 9 & 2 & 0 \\ 0 & 0 & 0 & 1 & | & 11 & -4 & -1 & 0 \\ 0 & 0 & 0 & 0 & | & 1 & -1 & 0 & 1 \end{pmatrix}$$

If we call the left-hand side of the first pair of matrices A, use this row-reduction information to find the dimensions and bases for the subspaces $\mathbf{R}(A)$, $\mathbf{N}(A)$, and $\mathbf{R}(A^{T})$.

(5 pts. for each subspace.)

3. Do the vectors
$$\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, and $\begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$ span \mathbf{R}^3 ?

Are they linearly independent?

Can you find a subset of this collection of vectors which forms a basis for \mathbb{R}^3 ? (10 pts. for spanning, 10 pts. for lin indep, 5 pts. for basis.)

5. Find the orthogonal projection of the vector $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ onto

the lines through
$$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
 and the vectors (a) $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$, (b) $\begin{pmatrix} 2\\2\\1 \end{pmatrix}$, and (c) $\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$

(5 pts. each).

1. (20 pts.) Find, using any method (other than psychic powers), the determinant of the matrix

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 3 \\ 4 & 4 & 2 \end{pmatrix}$$

Is this matrix invertible?

2. (15 pts.) Explain why the set of vectors

$$W = \{(x, y, z) \mid x + y + 2z = 1\}$$

is **not** a subspace of \mathbf{R}^3 .

3. (25 pts.) Show that the system of equations Ax = b, where

$$A = \begin{pmatrix} -1 & 1\\ 1 & -2\\ 0 & 1 \end{pmatrix} \text{ and } b = \begin{pmatrix} 2\\ 2\\ -1 \end{pmatrix}$$

is **not** consistent. Find the least squares solution to this sytem, i.e., the value of Ax closest to b.

4.(20 pts.) For the matrix

•

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

find bases for, and the dimensions of, the row, column, and null spaces of A.

5. (20 pts.) Find **all** of the solutions to the equation Ax = b, where

$$A = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 3 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \text{ and } b = \begin{pmatrix} -2 \\ -2 \\ 0 \end{pmatrix}$$

5. A friend of yours runs up to you and says 'Look I've found these three vectors v_1, v_2, v_3 in \mathbb{R}^2 that are linearly independent!' Explain how you know, without even looking at the vectors, that your friend is wrong (again).