Math 325 Exam 1 practice problems

1. Show that if $x, y \ge 0$, then the arithmetic mean $m = \frac{x+y}{2}$ and the geometric mean $\mu = \sqrt{xy}$ of x and y always satisfies $m \ge \mu$. [Hint: show that $2(m - \mu)$ is a square!]

Show by an example that this inequality can be <u>strict</u> (that is, $m > \mu$).

- 2. Show that $\alpha = \sqrt{2 + \sqrt{7}}$ is **not** a rational number.
- 3. Use induction to show that for every $n \ge 1$,

$$a_n = \sum_{k=1}^n \frac{1}{k(k+2)} = \frac{n(3n+5)}{4(n+1)(n+2)} = f(n)$$

(Hint: write out what f(n+1) is; it will help.)

- 4. (a) Use induction to show that for all n ≥ 1, n(n + 1) is divisible by 2.
 (b): Use induction to show that for every n≥1, n³ + 5n is divisible by 6.
 - 5. Use the rational roots theorem to show that $\alpha = \sqrt{2} \sqrt{5}$ is not a rational number.
 - 6. Suppose that S and T are both non-empty subsets of the real line, and both are bounded from above. Show that if $lub(S) \leq lub(T)$, then $lub(S \cup T) = lub(T)$.
 - 7. Show, directly from the ϵ - δ definition, that $f(x) = x^2 3x 5$ is continuous at x = a for every $a \in \mathbb{R}$.
- 8. Prove, directly from the definition of a limit, that

$$\lim_{x \to 1} (x^2 - 3x + 1) = -1$$

9. Find the following limits (you need not give ϵ - δ level explanations):

(a):
$$\lim_{x \to 1} \frac{x^3 - 3x^2 + x + 1}{x^2 - 3x + 2}$$

(b):
$$\lim_{x \to -1} \frac{x^2 + 4x + 3}{x^3 - x^2 + x - 1}$$

(c):
$$\lim_{x \to 2} \frac{(x+1)^2 - 9}{x^4 - 3x^2 - 3x + 2}$$