Math 325 Problem Set 10

Starred (*) problems are due Friday, November 30.

(*) 59. Show that if f is integrable on $[a, b]$, and you can show (from the definition as $\left| \sum_{i=1}^{n} \right|$ $i=1$ $f(c_i)(x_i - x_{i-1}) - L < \epsilon)$ that $\int_a^b f(x) \, dx = L$ and $\int_a^b f(x) \, dx = M$, then $L = M$. [I.e., 'the value of an integral is unique'.]

[Suppose not! Show that there is a partition P that gets you into trouble...]

(*) 60. (Belding and Mitchell, p.129, $\#4b$ and $\#8$)

(a): Show that if h is integrable on the interval $[a, b]$ and $h(x) \geq 0$ for every $x \in [a, b]$, then for every partition $P = \{a = x_0 \langle x_1 \langle \cdots \langle x_n = b\} \rangle \$ of $[a, b]$ and set of 'samples' $S = \{c_1, \ldots, c_n\}$ with $c_i \in [x_{i-1}, x_i]$ for each i, we have the Riemann sum has $R(h, P, S) \geq 0$. Explain why we can then conclude that $\int_a^b h(x) dx \geq 0$.

(b): Use part (a) and the properties of integrals to show that if f and g are integrable on [a, b] and $f(x) \ge g(x)$ for every $x \in [a, b]$, then $\int_a^b f(x) dx \ge \int_a^b f(x) dx$ \int_a g(x) dx.

- 61. (Belding and Mitchell, p.129, $\#4(a)$) Suppose that f is integrable on [a, b], and $m \leq$ $f(x) \leq M$ for every $x \in [a, b]$. Show that $m(b - a) \leq \int^b$ $\int_a f(x) dx \leq M(b-a)$.
- 62. Suppose that f is differentiable on [a, b] with $f'(x) < k$ for every $x \in [(a, b)]$. Let P be any partition of [a, b]. Show that $U(f, P) - L(f, P) \leq k(b-a)^2$.

[The textbook provides some hints.]

63. Show: If f is integrable on [a, b], then $g(x) = |f(x)|$ is integrable on [a, b] and \int^b $\int_{a}^{b} f(x) \, dx \leq \int_{a}^{b} |f(x)| \, dx$.

[Hint: for integrable, use that $|f(y)| - |f(x)| \leq |f(y) - f(x)|$ for every x and y to show that $U(|f|, P) - L(|f|, P) \leq U(f, P) - L(f, P)$. For the inequality, look at earlier problems!]

- (*) 64. (Belding and Mitchell, p.147, $\#1$) Show, using the fundamental theorem of calculus, that for all $x \in \mathbb{R}$ we have \int^x $\overline{0}$ |t| $dt = \frac{1}{2}$ 2 $x|x|$. [Consider the two cases $x > 0$ and $x < 0$ separately.
- 65. (Belding and Mitchell, $p148.$, $\#10$) Prove the **generalized integral mean value theorem:** If f and g are continuous functions on [a, b] and $g(x) > 0$ on [a, b], then there is a $c \in [a, b]$ such that $\int_a^b f(x)g(x) dx = f(c) \int_a^b$ \int_a g(x) dx.

[The textbook provides a suggestion of how to do this.]