Math 325 Problem Set 3

Starred (*) problems are due Friday, September 14.

10. Show, by induction, that the (ordinary) triangle inequality extends to show that for any $n \ge 2$ we have

$$\sum_{k=1}^n a_k | \leq \sum_{k=1}^n |a_k| \; .$$

(*) 11. Show that the <u>maximum</u> of two numbers $x, y \in \mathbb{R}$ can be computed by

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$
.

[That is, if $x \leq y$ then $\frac{x+y+|x-y|}{2} = y$, while if $y \leq x$ then it equals x.]

Find a similar formula which gives the minimum of x and y.

- 12. (Belding and Mitchell, p.35, #4) Under what conditions on $a, b, c \in \mathbb{R}$ can we conclude that ab = cb implies that a = c? Prove your answer.
- 13. (Belding and Mitchell, p.3,5 #7) If we have a subset $A \subseteq \mathbb{R}$ of real numbers, then A satisfies all of the properties of a field so long as (a) 0 and 1 are elements of A and (b) whenever $a, b \in A$ we have $-a \in A$, $a^{-1} \in A$, $a + b \in A$ and $ab \in A$ (where these are the negative and inverse in the real line); that is, A is *closed* under negation, inverse, addition, and multiplication.

Use this to show that the set $\mathbb{Q}[\sqrt{11}] = \{a + b\sqrt{11} : a, b \in \mathbb{R}\}$ satisfies all of the properties of a field.

- (*) 14. (Belding and Mitchell, p.36, #17) Use the triangle inequality to establish that for every $x, y \in \mathbb{R}$ we have
- (*) (a) $|x| |y| \le |x y|$ (*) (b) $|x| |y| \le |x + y|$
- (*) (d) $||x| |y|| \le |x y|$
- (*) 15. (a) Show that if $B \subseteq \mathbb{R}$ is bounded, and $A \subseteq B$, then A is bounded.
- (*) (b) If $S \subseteq \mathbb{R}$, then we define the set |S| as $|S| = \{|s| : s \in S\}$. Show that if S is bounded, then |S| is bounded.
- 16. For each of the following sets, either show that it is bounded (and find bounds), or explain why it isn't. [You can appeal to results from calculus in your answers.]

(a)
$$A = \left\{ \sum_{k=1}^{n} \frac{1}{k} : n \in \mathbb{N} \right\}$$

(b) $B = \left\{ \sum_{k=1}^{n} \frac{1}{2^{k}} : n \in \mathbb{N} \right\}$
(c) $C = \left\{ \frac{\ln n}{n} : n \in \mathbb{N} \right\}$
(d) $D = \left\{ \frac{2^{n}}{n^{2}} : n \in \mathbb{N} \right\}$