Math 325 Problem Set 5

Starred (*) problems are due Friday, September 28.

24. Show that if $0 \le x < 1$ then for any $\epsilon > 0$ there is an $n \in \mathbb{N}$ so that $x^n < \epsilon$.

[Hint: Suppose not! Then look at lower bounds for $A = \{x^n : n \in \mathbb{N}\}$.]

- (*) 25. (Belding and Mitchell, p.63, #1) Using the ϵ - δ formulation of limits,
- (*) (b) show that $\lim_{x \to -1} 1 2x = 3$.

(c) show that $\lim_{x\to 5}\sqrt{x+4}=3$.

- (*) (e) show that $\lim_{x \to -3} \frac{1}{8 4x} = \frac{-1}{4}$.
- 26. (Belding and Mitchell, p.63, #2) Suppose that $g : \mathbb{R} \to \mathbb{R}$ is a bounded function, i.e., there is an $M \in \mathbb{R}$ so that $|g(x)| \leq M$ for all $x \in \mathbb{R}$. Show that $\lim_{x \to 0} xg(x) = 0$.
- 27. (Belding and Mitchell, p.64, #6) Show that if $\lim_{x \to a} f(x) = L$, then for any $\eta > 0$ there is a $\tau > 0$ so that $0 < |x_1 a| < \tau$ and $0 < |x_2 a| < \tau$ imply that $|f(x_1) f(x_2)| < \eta$. [I.e., "if f has a limit as we approach a, then points close (enough) to a have values close to <u>one another</u>".]

[N.B. This is a useful way to show that a function has no limit as x approaches a: show that this conclusion does <u>not</u> hold!]

(*) 28. (The 'Squeeze Play' Theorem) Suppose that $f, g, h : \mathbb{R} \to \mathbb{R}$, are functions with with $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$ with 0 < |x - a| < M for some $a \in \mathbb{R}$ and M > 0. Suppose further that

 $\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x).$ Show that $\lim_{x \to a} g(x) = L$.

[See Belding and Mitchell, p.64, #8 for an outline that you might follow.]

(*) 29. (Belding and Mitchell, p.64, #9) If $f : \mathbb{R} \to \mathbb{R}$ is a function, $\lim_{x \to a} f(x) = L$, and for some $K, M \in \mathbb{R}$ with M > 0 we have $f(x) \leq K$ for all x with 0 < |x - a| < M, show that $L \leq K$.

[What's the alternative?]

30. (Belding and Mitchell, p.69, #1) Show, using our limit theorems and induction, that for every $n \in \mathbb{Z}$ we have $\lim_{x \to a} x^n = a^n$ (where we assume that $a \neq 0$ when n < 0).