Math 325 Problem Set 8

Starred (*) problems are due Friday, October 26.

45. Show that the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x \cdot |x|$ is differentiable at every $a \in \mathbb{R}$.

[Hint: in most cases, you can (if you stay close to a) replace f with a more 'amenable' function...]

- 46. (Belding and Mitchell, p.99, #3(b)) Show that if $0 \in D$ and $f : D \to \mathbb{R}$ is continuous at a = 0, then $g : D \to \mathbb{R}$ given by g(x) = xf(x) is differentiable at a = 0.
- (*) 47. (Belding and Mitchell, p.100, #10 (sort of)) If $a \in D$ and $f : D \to \mathbb{R}$ is differentiable at a and f'(a) > 0, show that there is a $\delta > 0$ $x \in (a, a + \delta)$ implies that f(x) > f(a)and $x \in (a - \delta)$ implies that f(x) < f(a).
- (*) 48. Show that if $a \in D$, $f, g: D \to \mathbb{R}$ are both differentiable and x = a, f(a) = g(a), and $f(x) \leq g(x)$ for all $x \in D$, then f'(a) = g'(a).

[What's the alternative? The previous problem can help!]

49. (The 'Squeeze Play Theorem' for derivatives): Show that if $a \in D$, $f, g, h : D \to \mathbb{R}$ are functions with $f(x) \leq g(x) \leq h(x)$ for all $x \in D$, f(a) = g(a) = h(a), and f and h are differentiable at x = a, then g is differentiable at x = a and f'(a) = g'(a) = h'(a).

[Note that the only 'new' things here are that g is differentiable at a and g'(a) = f'(a)...]

(*) 50. Suppose that $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both continuous, and f is differentiable at x = 0, with f(0) = f'(0) = 0. Show that h(x) = f(x)g(x) is also differentiable at x = 0 and h'(0) = 0.

[Note that since we do <u>not</u> know that g is differentiable at x = 0, we <u>cannot</u> use the product rule (even if we knew what that was)....]

51. As almost none of us learn, the angle sum formula for tangent is

$$\tan(a+h) = \frac{\tan a + \tan h}{1 - \tan a \tan h}$$

Use this to show directly from the ("limit as $h \to 0$ " definition) that the derivative of $f(x) = \tan x$ is what you were told it is in calculus class.

[If you want something extra to do, derive this angle sum formula from the angle sum formulas for $\sin x$ and $\cos x$ (for fun!).]