Math 325 Topics Sheet for Exam 1

The Real Line: Nearly everything we will do comes down to understanding the properties of the real line R.

$\mathbb{R} =$ a complete ordered field

Field: we have addition $+$ and multiplication \cdot , so that (A1) addition exists: if $x, y \in \mathbb{R}$ then $x + y \in \mathbb{R}$ (A2) commutativity: $x + y = y + x$ for every $x, y \in \mathbb{R}$ (A3) associativity: $x + (y + z) = (x + y) + z$ for every $x, y, z \in \mathbb{R}$ (A4) zero exists: there is $0 \in \mathbb{R}$ so that $x + 0 = x$ for every $x \in \mathbb{R}$ (A5) additive inverses exist: for every $x \in \mathbb{R}$ there is a $(-x) \in \mathbb{R}$ with $x + (-x) = 0$ (M1) multiplication exists: if $x, y \in \mathbb{R}$ then $x \cdot y \in \mathbb{R}$ (M2) commutativity: $x \cdot y = y \cdot x$ for every $x, y \in \mathbb{R}$ (M3) associativity: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for every $x, y, z \in \mathbb{R}$ (M4) one exists: there is $1 \in \mathbb{R}$ so that $x \cdot 1 = x$ for every $x \in \mathbb{R}$ (M5) multiplicative inverses exist: for every $x \in \mathbb{R}$ with $x \neq 0$ there is a $x^{-1} \in \mathbb{R}$ with $x \cdot x^{-1} = 1$ (D) distributivity: for every $x, y, z \in \mathbb{R}$ we have $x(y + z) = xy + xz$ **Ordered:** there is a collection $P =$ the *positive numbers* so that (P1) closed under addition: if $x, y \in \mathcal{P}$ then $x + y \in \mathcal{P}$ (P2) closed under multiplication: if $x, y \in \mathcal{P}$ then $x \cdot y \in \mathcal{P}$ (P3) trichotomy: for every $x \in \mathbb{R}$ exactly one of the following is true: $x \in \mathcal{P}$, or $-x \in \mathcal{P}$, or $x = 0$. We then defined the ordering $x \leq y$ to mean that $y - x \in \mathcal{P}$. (So $x > 0$ means $x \in \mathcal{P}$.) Basic properties: trichotomy! for any $x, y \in \mathbb{R}$ exactly one of $x < y, x = y$, or $x > y$ is true. transitivity: $x < y$ and $y < z$ implies that $x < z$

 $x < y$ implies that $x + z < y + z$ for any $z \in \mathbb{R}$

 $x < y$ and $z > 0$ implies that $xz < yz$ (because $yz - xz = (y - x)z$ with $y - x, z \in \mathcal{P}$) weak inequality: $a \leq b$ means $a < b$ or $a = b$; similar properties hold!

From these basic properties we can recover many familiar properties we have seen before; for example

 $(-x)y = -(xy)$ $(-x)(-y) = xy$ $-(-x) = x$ $(x^{-1})^{-1} = x$ $x < 0$ and $y > 0$ implies $xy < 0$, $z < 0$ and $w < 0$ implies $zw > 0$ the additive inverse of a number is unique (i.e., if $x + y = 0 = x + z$ then $y = z$)

Completeness: From the natural (= counting) numbers $\mathbb N$ we get the integers $\mathbb Z$ (by taking additive inverses) and then the rationals \mathbb{O} (by taking multiplicative inverses). But to get the reals R we need to step beyond the properties above.

A set $A \subseteq \mathbb{R}$ is bounded (bdd) from above if there is a $M \in \mathbb{R}$ so that $x \leq M$ for every $x \in A$.

A least upper bound λ is an upper bound for A so that no *smaller* number is an upper bound. In symbols: $x \leq \lambda$ for every $x \in A$ and if $\mu < \lambda$ then there is an $x \in A$ with $\mu < x$

[Equivalently: λ is an upper bd for A and if ν is also an upper bound for A then $\lambda \leq \nu$.] Completeness Axiom: Every non-empty set $A \subseteq \mathbb{R}$ that is bdd from above has a least upper bound.

Least upper bound of A is unique! $\lambda = \sup(A)$

Application: If $x, y \in \mathbb{R}$ and $y - x > 1$, then there is an $n \in \mathbb{Z}$ with $x \leq n < y$.

Application: $A = \{x \in \mathbb{R} : x^2 < 2\}$ is non-empty and bdd above: $\lambda = \sup(A)$. Then we showed: $\lambda^2 = 2$ (!) So $\lambda =$ what we would call $\sqrt{2}$

Rational Roots Theorem: If $p(x) = a_0 x^n + \cdots + a_{n-1} x + a_n$ is a polynomial with integer coefficients $a_i \in \mathbb{Z}$ for all i), and if $r = \alpha/\beta$ is a rational root of $p(p(\alpha/\beta)) = 0$ where α and β have no factors in common, then α evenly divides a_n and β evenly divides a_0 .

Since $\sqrt{2}$ is a root of $p(x) = x^2 - 2$, which by the rational roots theorem has <u>no</u> rational roots, $\sqrt{2} \notin \mathbb{Q}$. (!) By the same reasoning, if $n \in \mathbb{N}$ and $\sqrt{n} \in \mathbb{Q}$ then $\sqrt{n} \in \mathbb{N}$.

Archimedean Property: If $A \subseteq \mathbb{Z}$ is bounded above, then it has a *largest element*. That is, there is an $\lambda \in A$ so that $z \leq \lambda$ for every $z \in A$. (In general for a set A whose supremum λ lies in A, we call it the maximum of A.)

Application: the *Principle of Mathematical Induction:* If $A \subseteq \mathbb{N}$ is a set satisfying (1) $n_0 \in A$, and (2) if $n \ge n_0$ and $n \in A$ then $n + 1 \in A$, then $\{n \in \mathbb{N} : n \ge n_0\} \subseteq A$. PMI as it is usually stated: If $P(n)$ is a statement about the integer n so that

(1) $P(n_0)$ is <u>true</u>, and

(2) if $n \geq n_0$ and $P(n)$ is true then $P(n+1)$ must also be true,

then $P(n)$ is true for every integer $n \geq n_0$.

Sample applications:

For every integer
$$
n \ge 1
$$
 we have $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
For every integer $n \ge 1$ we have $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

For every $n \geq 5$ we have $2^n > n^2$

Fibonacci sequence: $a_0 = a_1 = 1$ and for $n \ge 1$ we have $a_{n+1} = a_n + a_{n-1}$. Then for every $n \geq$ (something) we have $a_n \geq$ $\frac{3}{2}$ 2 \setminus^n , and for every $n \geq 12$ we have $a_n \geq n^2$.

[For all of these the method by which we established the inductive step is probably more important as we go forward than the actual result!]

More Archimedean property consequences:

If $\epsilon > 0$ then there is an $n \in \mathbb{N}$ so that $n\epsilon > 0$.

[Add a positive number to itself enough times and you will get a big number!] Rationals are everywhere: If $x, y \in \mathbb{R}$ with $x < y$ then there is an $r \in \mathbb{Q}$ so that $x < r < y$.

Sequences and convergence: Start with *distance*:

Absolute value: $|x| = x$ if $x \ge 0$, otherwise it is $-x$. So $|x| \ge 0$ for all x. "Triangle inequality": $|x + y| \leq |x| + |y|$ for every $x, y \in \mathbb{R}$. [Useful 'opposite' consquence: $|x - y| \ge |x| - |y|$

(useful for showing that $|x - y|$ is <u>not</u> small!) $|x - y|$ = the distance between x and y. Triangle inequality: $|x - z| \le |x - y| + |y - z|$

Sequences: A sequence is essentially just a function $f : \mathbb{N} \to \mathbb{R}$. We write $f(n) = a_n$ Examples: the Fibonnaci sequence! $a_0 = a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 5, a_5 = 8, a_6 = 13$. . .

$$
a_n = 1 + (-1)^n/n, \quad b_n = \frac{n^2 - n + 13}{3n^2 + 2n - 13}
$$

$$
a_n = \sum_{k=1}^n \frac{1}{k^2}
$$

Convergence: What happens to a sequence as n gets large? E.g., for $b_n =$ $n^2 - n + 13$ $\frac{n(n+1)}{3n^2+2n-13}$ observation/intuition/calculus suggests that for large n b_n is approximately 1/3. Formalizing this notion leads us to:

 $\lim_{n\to\infty} a_n = L$ means that a_n is close to L so long as n is <u>large</u>. More precisely, a_n is as close as we want it to be to L, so long as n is <u>large enough</u>. This leads us to

 $\lim_{n\to\infty} a_n = L$ means for every $\epsilon > 0$ [think: small!] there is an $N \in \mathbb{N}$ [N depends on ϵ (!)] so that $n \geq N$ implies that $|a_n - L| < \epsilon$. If this limit exists (i.e., there is an L that the sequence converges to) we say that the sequence is convergent. If there is no number that the sequence converges to, we say that the sequence is *divergent*. [Shorthand: we write $a_n \rightarrow L.$

The key here is that we wish to show that $|a_n - L|$ is small; we typically do this by comparing $|a_n - L|$ to other things that we <u>know</u> are small. This, in turn, we usually do by altering $|a_n - L|$, making it larger (but not too large!), until we end up with something we can show is small (so long as n is large enough!). To help us do this we have some basic limit results:

If $a_n \to L$ and $b_b \to M$, and $k \in \mathbb{R}$ is a konstant, then: $ka_n \to kL$ $a_n + b_n \rightarrow L + M$ $a_n - b_n \to L - M$ $a_n b_n \to LM$ $a_n/b_n \to L/M$ (so long as $b_n, M \neq 0$)

Other properties we learned along the way:

If $(a_n)_{n=1}^{\infty}$ is convergent, then the set $A = \{a_n : n \in \mathbb{N}\}\)$ is bounded. Limits are unique! If $a_n \to L$ and $a_n \to M$, then $L = M$.

$$
\frac{1}{n} \to 0
$$
 If $a_n \geq a$ for every n (eventually!) and $a_n \to L$, then $L \geq a$

If $a_n \geq b_n$ for every n and $a_n \to L$, $b_n \to M$, then $L \geq M$ If $a_n \to L$ and $L \neq 0$, then eventually $|a_n| >$ $|L|$ 2 If $a_n \to L$ with $a_n, L \geq 0$ for all n, then $\sqrt{a_n} \to \sqrt{L}$ If If $a_n \to L$ and $L > 0$, then eventually $a_n >$ L 2 > 0

Showing convergence without knowing the limit: monotonicity

 a_n is monotone increasing if $a_{n+1} \geq a_n$ for every n

 b_n is monotone decreasing if $b_{n+1} \leq b_n$ for every n

If it is one or the other, we say the sequence is monotone (or monotonic).

A monotone increasing sequence that is bounded above (i.e., for some $M \in \mathbb{R}$ we have $a_n \leq M$ for every $n \in \mathbb{N}$) converges it limit is sup $\{a_n : n \in \mathbb{N}\}\$

[A monotone decreasing sequence that is bounded below also converges!]

Examples:

$$
a_n = \sum_{k=1}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \frac{1}{k(k-1)} = 1 + \frac{n-1}{n} \le 2
$$
 (where the last equality is established by
induction) as a

induction!), so $a_n \to L$ for some L [Fact: $L = \pi^2/6$...]

 $a_1 = 7$ and $a_{n+1} = \sqrt{5 + a_n}$ is monotone decreasing and bounded below (by 0), so converges. $a_n \to L$ satisfies $L = \sqrt{5 + L}$ (by uniqueness!), allowing us to compute L!

An 'intrinsic' characterization of convergence: Cauchy sequences

If $a_n \to L$, then the terms of the sequence eventually get close to one another: if $n \geq N$ implies $|a_n - L| < \epsilon$ then $n, m \ge N$ implies

 $|a_n - a_m| = |(a_n - L) + (L - a_m)| \le |a_n - L| + |L - a_m| = |a_n - L| + |a_m - L| < \epsilon + \epsilon = 2\epsilon$ This leads to the notion of a Cauchy sequence:

 $(a_n)_{n=1}^{\infty}$ is Cauchy if for every $\epsilon > 0$ there is an N so that $n, m \ge N$ implies $|a_n - a_m| < \epsilon$. Convergent sequences are Cauchy.

More surprisingly, every Cauchy sequence is convergent! I.e., $(a_n)_{n=1}^{\infty}$ Cauchy implies that there is an L so that $a_n \to L$.

Finding L: Cauchy sequences are bounded. Then setting $b_n = \sup\{a_k : k \geq n\}$, the sequence b_n is monotone *decreasing*, and bounded below (by the lower bound of the entire sequence a_n , so b_n converges to some number L. Then $a_n \to L$, because for for any $\epsilon > 0$ there is an N so that for $n > N$ we have

 $|a_n - a_N| < \epsilon/3$ and $|a_N - b_N| < \epsilon/3$ and $|b_N - L| < \epsilon/3$; adding together gives $|a_n - L| < \epsilon$.