
Math 325 Topics Sheet for Exam 2

[Technically, everything from the topics sheeet for exam 1, plus...]

(an)
∞

n=1 is Cauchy if for every ǫ > 0 there is an N so that n,m ≥ N implies |an − am| < ǫ.

Convergent sequences are Cauchy. And every Cauchy sequence is convergent! I.e., (an)
∞

n=1

Cauchy implies that there is an L so that an → L.

Finding L: Cauchy sequences are bounded. Then setting bn = sup{ak : k ≥ n}, the
sequence bn is monotone decreasing, and bounded below (by the lower bound of the entire
sequence an), so bn converges to some number L. Then an → L, because for for any ǫ > 0
there is an N so that for n ≥ N we have

|an − aN | < ǫ/3 and |aN − bN | < ǫ/3 and |bN − L| < ǫ/3;
adding together gives |an − L| < ǫ.

This technology leads to: for a bounded sequence (an)
∞

n=1, if we set An = {ak : k ≥ n},
then the sequence bn = sup(An) is monotone decreasing and the sequence cn = inf(An)
is monotone increasing. Since each is also bounded (since A is), they each converge. We
denote their limits as limsupan = lim bn and liminfan = lim cn. Since cn ≤ bn for every n,
we know that liminfan ≤ limsupan. In fact, we learned that

(an)
∞

n=1 is convergent ⇔ liminfan = limsupan.

Many of the results about convergent sequences also hold for liminf’s and limsup’s, suitably
interpreted; for example limsup(an + bn) ≤ limsupan + limsupbn . [Note: equality need
not hold!] Also, if an → L and bn is bounded, then limsupanbn = Llimsupbn .

Subsequences: A subsequence amounts to choosing some of the terms of a sequence;
formally, a subsequence is ank

= ag(k) for some strictly monotone increasing function
g : N → N. Subsequences inherit many of the same properties of the original sequence, for
example, boundedness and convergence: if an → L then ank

→ L for every subsequence of
an. On the other hand,

Every bounded sequence has a monotonic subsequence. [But we cannot determine before-
hand whether or not it will be increasing or descreasing.]

In particular, for any bounded sequence an there are subsequences converging to both
limsupan and to liminfan .

Functions of a real variable: Sequences are functions with domain N. When we expand
our allowed domains, f : D → R for some D ⊆ R, we can extend our notion of limit, as
well.

lim
x→a

f(x) = L means that |f(x) − L| is small, so long as |x − a| is small enough. One

feature: a need not be in the domain of f . If fact, even if is is, we do not care what value
f takes there; our formal definition of the limit is

For every ǫ > 0, there is a δ > 0 so that x ∈ D and 0 < |x − a| < δ implies that
|f(x)− L| < ǫ.

One sticky point: such limits need not be unique! [If x ∈ D and 0 < |x− a| < δ is satified
by no number, then L could be anything we want!] For that matter, the limit need not
exist! If it does, we say that f converges at a. For this purpose, we generally restrict



ourselves, in discussing limits, to accumulation points of D. c is an accumulation point of
D if for every δ > 0 there is an x ∈ D with 0 < |x− c| < δ. [That is, no matter how clse
to c we need to be, there are points of D other than c that are at least that close.] With
this, if c is an accumulation point of D, then the limit of f at c (if it exists) is unique.

Leveraging our work on sequences, lim
x→a

f(x) can be computed using sequences. lim
x→a

f(x) =

L if and only if for every sequence an with an → a and an 6= a for every n, we have
f(an) → L.

Then most of our familiar results about limits of sequences carry over to functions: for
example if f(x) → L and g(x) → M as x → a, then (f + g)(x) → L+M and (f · g)(x) →
LM .

Continuity: From calculus you are used to the idea that for many functions to compute
its limit we “plug in”. That is, lim

x→c
f(x) = f(c). We call such a function continuous at c.

If it is not continuous at c, we say it is discontinuous at c. If f : D → R is continuous at
c for every c ∈ D, we say that it is continuous on D. Continuity can be described using
ǫ’s and δ’s: f is continuous at c provided that for every ǫ > 0 there is a δ > 0 so that
|x− c| < δ implies that |f(x)− f(c)| < ǫ.

Because limits can be described using sequences, so can continuity. In particular we have
that f is continuous at c ∈ D if and only if for every sequence an → c with an ∈ D for
every n, we have f(an) → f(c).

This enables us to use results about sequences to prove results about continuous functions.
For example, if f and g are both continuous at c then so are f + g, f − g, f · g, and f/g
(so long, for the last, as g(c) 6= 0).

Possibly the two most important results about continuous functions are:

Intermediate Value Theorem: If f : [a, b] → R is continuous on [a, b] and D lies between
f(a) and f(b), then there is a c ∈ [a, b] so that f(c) = D.

Extreme Value Theorem: If f : [a, b] → R is continuous on [a, b], then there are c, d ∈ [a, b]
so that f(c) ≤ f(x) ≤ f(d) for every x ∈ [a, b].

The IVT can be used in root-finding: if f is continuous on an interval and f(α) < 0 < f(β),
then there is a root of f lying between α and β. By repeatedly narrowing the distance
between α and β (like, for example, taking their midpoint), we can find succesively better
approximations to the root.

The IVT also allows us to show that every (positive) real number has an n-th root, for
any natural number n; f(x) = xn − c always has a root.

The EVT tells us that maxima and minima exist, for function defined on a closed interval.
[Techniques of calculus tells us how to find them, for differentiable functions.]

Uniform Continuity: In many situations, continuity alone is not ‘enough’ to obtain the
results that we might want. For example, for each x ∈ [0, 1] fn(x) = xn → 0 if x < 1 and
→ 1 if x = 1. Each of the functions involved is continuous, but their ‘limit’ is not! The
‘problem’ is that continuity is defined for each point: the δ > 0 we find is chosen with
knowledge of both ǫ > 0 and the point c ∈ D at which continuity is being studied. So δ is
a function of both ǫ and c.



A stronger form of continuity is obtained by eliminating one of these dependences: f :
D → R is uniformly continuous on D if for every ǫ > 0 there is a δ > 0 so that x, y ∈ D
and |x− y| < δ implies that |f(x)− f(y)| < ǫ. That is, δ depends ony on ǫ, not on which
points are input to f . A uniformly continuous function is therefore continuous, but the
opposite need not be true. f(x) = 1/x is continuous on the interval (0,∞), but is not
uniformly continuous on that interval.

But if the domain of f is a closed interval [a, b], then continuity does imply uniform conti-
nuity. [Our proof relied on the fact that bounded sequences have convergent subsequences!]

Still other conditions imply uniform continuity. A function f : D → R is Lipschitz if there
is a constant M so that for every x, y ∈ D we have |f(x) − f(y)| ≤ M · |x − y|. [Then
δ = ǫ/M will work for the corresponding ǫ.]

Integration: One use of uniform continuity arises in the construction of the integral of a
function. If f : [a, b] → R is bounded, then we can try to approximate the area under the
graph of f using rectangles. If the rectangles all lie inside this region, then our intuition
tells us that the sum of their areas will be less than the area of the region. If the rectangles
completely cover the region, then the sum of their areas will be greater than the area of
the region. These ideas underlie the formal notion of the Riemann integral.

Given a collection of points a = x0 < x1 < · · · < xn = b (this is called a partition P of the
interval [a, b]) we can define mi = inf{f(x) : x ∈ [xi, xi+1]} and Mi = sup{f(x) : x ∈

[xi, xi+1]}. Then our intuition suggests that L(f, P ) =

n−1∑

i=0

mi(xi+1 − xi) and U(f, P ) =

n−1∑

i=0

Mi(xi+1 − xi) are, respectively, less than and greater than the area under f . These

are lower and upper Riemann sums of f . Then

L(f) = sup{L(f, P ) : P a partition of [a, b]} and U(f) = inf{U(f, P ) : P a partition of [a, b]}
satisfy

L(f) ≤ the area under f ≤ U(f) .

L(f) is the largest approximation by rectangles that we can obtain from ‘below’, and U(f)
is the smallest approximation by rectangles that we can obtain from ‘above’. [These are
called the lower Riemman integral and the upper Riemann integral of f , respectively.] We
say that f is (Riemann) integrable on [a, b] provided L(f) = U(f); this common value we

denote
∫ b

a
f(x) dx .

Since for partitions P ⊆ Q we have L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ), we have that f
is integrable over [a, b]⇔ for every ǫ > 0 there is a partition P so that U(f, P )−L(f, P ) < ǫ.

Not every function is Riemann integrable! For example, our favorite terrible function,
f(x) = 0 if x ∈ Q and f(x) = 1 if x 6∈ Q, is integrable over no interval (containing more
than one point). But:

If f is continuous on [a, b], then f is integrable on [a, b]. [The proof uses uniform continuity
of f in an essential way!]

A function f is monotone if it is either monotone increasing [x ≥ y implies that f(x) ≥ f(y)]
or is monotone decreasing [x ≥ y implies that f(x) ≤ f(y)] for every pair of points in the



domain. Then we showed that every function that is monotone on an interval [a, b] is
integrable over [a, b].


