
Math 325, Section 1

Some practice problems for the final exam

1. (a) Use induction to show that for all n ≥ 1, n(n + 1) is divisible by 2.

(b): Use induction to show that for every n≥1, n3 + 5n is divisible by 6.

2. Let (an)∞n=1 be a bounded sequence of numbers, and define

sn = sup{ak : k ≥ n}
Show that the sequence (sn)∞n=1 is a monotonic sequence, and therefore converges. (Hint:
write sn as sup(An), and compare An to An+1.)

3. Prove, directly from the definition of a limit, that

lim
x→1

(x2 − 3x + 1) = −1

5. Show that the function f :R→R defined by

f(x) = x3 + 3x − 7

has exactly one root between −1 and 2 (i.e., show it has at least one root, and doesn’t
have two!).

3. Given any two rational numbers r1 < r2, we can consider the linear function
f : [r1, r2] → [0, 1] given by

f(x) =
x − r1

r2 − r1

.

(a): Show that f is continuous, and if x ∈ Q, then f(x) ∈ Q, where Q = the rational
numbers. (10 pts.)

(b): Show that between any two rational numbers r1 < r2 there is an irrational number.
(Hint:

√
2/2 isn’t rational (Why?); the intermediate value theorem could help!) (20 pts.)

4. Let (an)∞
n=1, (bn)∞

n=1 be (bounded) sequences, and suppose that, for some subsequence
(bnk

)∞
k=1

, ak ≤ bnk
for all k. Show that

lim
n→∞

an ≤ lim
n→∞

bn

provided both limits exist! (Hint: You can take the high road, and just quote theorems,
but there is also another way.) (20 pts.)

5. Show that if (an)∞
n=1 is a bounded sequence and (ank

)∞
k=1

is a subsequence, then

lim sup
k→∞

(ank
) ≤ lim sup

n→∞

(an)

(Hint: use problem 4! (although, again, there is another way.))

4. Suppose that f : [0, 1] → [0,∞ is a continuous function, with the property that, for all
x ∈ [0, 1], there is a y ∈ [0, 1] such that f(y) ≤ (1/2)f(x). Show that there is a c ∈ [0, 1]
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such that f(c) = 0. (Hint: use the hypothesis to find a sequence xn in [0, 1] such that
f(xn) → 0.)

7. Let f, g : D → R be two continuous functions. Show that the set

C = {x ∈ D : f(x) = g(x)}
contains any of its accumulation points that also lie in D.

8. Let f : D → R be a function, and suppose that, for some K ∈ R,

|f(x) − f(y)| ≤ K|x − y|
for all x, y ∈ D. Show that f is uniformly continuous.

9. Suppose (xn)∞
n=1 and (yn)∞

n=1 be Cauchy sequences in R. Define zn by z2n−1 = xn and
z2n = yn. Show that (zn)∞

n=1 is also a Cauchy sequence if and only if the two original
sequences converge to the same value.

11. Show that if f, g : [a, b] → R are both integrable on [a,b], then so is fg.

(Hint: f and g are (by assumption) both bounded, and
f(x)g(x)− f(y)g(y) = f(x)(g(x)− g(y)) + g(y)(f(x)− f(y)). This says something about
sup{f(x)g(x) : x ∈ [ti−1, ti]} − inf{f(x)g(x) : x ∈ [ti−1, ti]} .)

8. Show that if f : [a, b] → R is integrable on [a, b], and [c, d] ⊆ [a, b], then f : [c, d] → R is
also integrable on [c, d].

(Hint: take a partition P of [a,b] with U(f,P)−L(f,P) small; then consider Q = P ∪ {c, d}
(a partition of [a,b], and (more importantly) S = Q∩ [c, d] (a partition of [c,d]). What can
we say about U(f, S)− L(f, S) ?) (Of course, there is also a different way!)

5. Show that if (fn)∞
n=1 and (gn)∞

n=1, where fn, gn : D → R, are sequences of functions which
converge uniformly to bounded functions f, g : D → R, then fngn converges uniformly
to fg.
(Hint: eventually, the fn and gn are bounded; and

fngn − fg = fn(gn − g) + g(fn − f) !)
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