Math 325 Topics Sheet for Exam 1

Throughout, we rely on set notation to make our ideas precise. Sets are typically described as the collection of all objects from a specific 'universe' that meet certain specific conditions: E.g., $S = \{x \in \mathbb{Q} \mid x^2 < 2\}$ = the rational numbers (universe!) whose square is less than 2 (condition!).

 $A \subseteq B$ means that every element of A is also an element of B; A = B is typically established by showing that $A \subseteq B$ and $B \subseteq A$.

 $A \cup B = \{x \mid x \in A \text{ textrmor } x \in B\} \text{ ; } A \cap B = \{x \mid x \in A \text{ textrmand } x \in B\} \text{ ; } A^c = \{x \mid x \notin A\}$

Functions: a function $f : A \to B$ is a rule which assigns to each $x \in A$ (the *domain*) exactly one element $f(x) \in B$ (the *codomain*).

We will mostly focus on functions with $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$. Functions come in different flavors:

increasing: if x > y then f(x) > f(y). non-decreasing: $x \ge y$ implies $f(x) \ge f(y)$.

decreasing: if x > y then f(x) < f(y). non-increasing: $x \ge y$ implies $f(x) \le f(y)$.

One-to-one: if f(x) = f(y), then x = y. Alternate form: if $x \neq y$ then $f(x) \neq f(y)$. Third form!: for any $y \in B$, there is at most one $x \in A$ with f(x) = y.

Onto: for every $y \in B$, there is <u>at least</u> one $x \in A$ with f(x) = y.

One-to-one <u>and</u> onto = a one-to-one correspondence (or *bijection*).

Note: one-to-one and onto have a lot to do with what the domain and codomain of the funciton f are!

Composition: $f: A \to B$, $g: B \to C$, then $g \circ f: A \to C$ is $(g \circ f)(x) = g(f(x))$

If $g \circ f$ is onto, then g is onto! If $g \circ f$ is one-to-one, then f is one-to-one!

The Real Line: Nearly everything we will do comes down to understanding the properties of the real line \mathbb{R} .

 $\mathbb{R} = a$ complete ordered field

Field: we have addition + and multiplication \cdot , so that

(A1) addition exists: if $x, y \in \mathbb{R}$ then $x + y \in \mathbb{R}$

(A2) commutativity: x + y = y + x for every $x, y \in \mathbb{R}$

(A3) associativity: x + (y + z) = (x + y) + z for every $x, y, z \in \mathbb{R}$

(A4) zero exists: there is $0 \in \mathbb{R}$ so that x + 0 = x for every $x \in \mathbb{R}$

(A5) additive inverses exist: for every $x \in \mathbb{R}$ there is a $(-x) \in \mathbb{R}$ with x + (-x) = 0

(M1) multiplication exists: if $x, y \in \mathbb{R}$ then $x \cdot y \in \mathbb{R}$

(M2) commutativity: $x \cdot y = y \cdot x$ for every $x, y \in \mathbb{R}$

(M3) associativity: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for every $x, y, z \in \mathbb{R}$

(M4) one exists: there is $1 \in \mathbb{R}$ so that $x \cdot 1 = x$ for every $x \in \mathbb{R}$

(M5) multiplicative inverses exist:

for every
$$x \in \mathbb{R}$$
 with $x \neq 0$ there is a $x^{-1} \in \mathbb{R}$ with $x \cdot x^{-1} = 1$
(D) distributivity: for every $x, y, z \in \mathbb{R}$ we have $x(y+z) = xy + xz$

Ordered: there is a collection \mathcal{P} = the *positive numbers* so that

- (P1) closed under addition: if $x, y \in \mathcal{P}$ then $x + y \in \mathcal{P}$
- (P2) closed under multiplication: if $x, y \in \mathcal{P}$ then $x \cdot y \in \mathcal{P}$
- (P3) trichotomy:

for every $x \in \mathbb{R}$ exactly one of the following is true: $x \in \mathcal{P}$, or $-x \in \mathcal{P}$, or x = 0.

We then defined the ordering x < y to mean that $y - x \in \mathcal{P}$. (So x > 0 means $x \in \mathcal{P}$.) Basic properties:

trichotomy! for any $x, y \in \mathbb{R}$ exactly one of x < y, x = y, or x > y is true.

transitivity: x < y and y < z implies that x < z

x < y implies that x + z < y + z for any $z \in \mathbb{R}$

x < y and z > 0 implies that xz < yz (because yz - xz = (y - x)z with $y - x, z \in \mathcal{P}$) weak inequality: $a \leq b$ means a < b or a = b; similar properties hold!

From these basic properties we can recover many familiar properties we have seen before; for example

(-x)y = -(xy) (-x)(-y) = xy -(-x) = x $(x^{-1})^{-1} = x$ x < 0 and y > 0 implies xy < 0 , z < 0 and w < 0 implies zw > 0the additive inverse of a number is unique (i.e., if x + y = 0 = x + z then y = z)

Proving things: Our ultimate goal is to provide <u>proofs</u> of some of the important results from calculus. This means that we need to <u>justify</u> the assertions we make, showing how a hypothesis forces our collusions to be true. Two often-used approaches:

Case analysis: Starting from a hypothesis (e.g., $x \neq 0$), one of several possibilities (cases) must be true (e.g., x > 0 or x < 0). If we show that in each case our hoped-for conclusion is true (e.g., $x^2 > 0$), then the hypothesis implies the conclusion ($x \neq 0$ implies $x^2 > 0$).

Proof by contradiction: "A implies B" is the same as "it is not possible for A to be true and also that B is false". Proof by contradiction consists of starting from 'A is true and B is false' and showing that we must inevitably show that something we know is false is <u>true</u>. This means that we cannot have A true and B false; so A implies B !

Example: using the Rational Roots Theorem (see below) we can show that it is not possible to have $x^3 = 5$ and $x \in \mathbb{Q}$. So $x^3 = 5$ implies $x \notin \mathbb{Q}$.

Another approach we will often use: induction! (see below)

Completeness: From the natural (= counting) numbers \mathbb{N} we get the integers \mathbb{Z} (by taking additive inverses) and then the rationals \mathbb{Q} (by taking multiplicative inverses). But to get the reals \mathbb{R} we need to step beyond the properties above.

A set $A \subseteq \mathbb{R}$ is bounded (bdd) from above if there is a $M \in \mathbb{R}$ so that $x \leq M$ for every $x \in A$.

A least upper bound λ is an upper bound for A so that no smaller number is an upper bound. In symbols: $x \leq \lambda$ for every $x \in A$ and if $\mu < \lambda$ then there is an $x \in A$ with $\mu < x$ [Equivalently: λ is an upper bd for A and if ν is also an upper bound for A then $\lambda \leq \nu$.]

Completeness Axiom: Every non-empty set $A \subseteq \mathbb{R}$ that is bdd from above has a least upper bound.

Least upper bound of A is unique! $\lambda = \sup(A)$

Application: If $x, y \in \mathbb{R}$ and y - x > 1, then there is an $n \in \mathbb{Z}$ with $x \le n < y$.

Application: $A = \{x \in \mathbb{R} : x^2 < 2\}$ is non-empty and bdd above: $\lambda = \sup(A)$. Then we showed: $\lambda^2 = 2$ (!) So $\lambda =$ what we would call $\sqrt{2}$

Rational Roots Theorem: If $p(x) = a_0 x^n + \cdots + a_{n-1} x + a_n$ is a polynomial with integer coefficients $a_i \in \mathbb{Z}$ for all i), and if $r = \alpha/\beta$ is a rational root of $p(p(\alpha/\beta) = 0$ where α and β have no factors in common, then α evenly divides a_n and β evenly divides a_0 .

Since $\sqrt{2}$ is a root of $p(x) = x^2 - 2$, which by the rational roots theorem has <u>no</u> rational roots, $\sqrt{2} \notin \mathbb{Q}$. (!) By the same reasoning, if $n \in \mathbb{N}$ and $\sqrt{n} \in \mathbb{Q}$ then $\sqrt{n} \in \mathbb{N}$.

Well-ordering Property: If $A \subseteq \mathbb{N}$ is non-empty, then it has a *smallest element*. That is, there is an $\lambda \in A$ so that $lambda \leq z$ for every $z \in A$. (In general for a set A whose infimum λ lies in A, we call it the *mminimum* of A. If the supremum lies in A, we call it the *maximum*.)

Application: the Principle of Mathematical Induction: If $A \subseteq \mathbb{N}$ is a set satisfying (1) $n_0 \in A$, and (2) if $n \ge n_0$ and $n \in A$ then $n + 1 \in A$, then $\{n \in \mathbb{N} : n \ge n_0\} \subseteq A$.

[Why? If not all $n \ge n_0$ are in A, then there is a smallest n which is not in A. But then $n-1 \in A$ (or $n = n_0$) both of which contradict our hypotheses!]

PMI as it is usually stated: If P(n) is a statement about the integer n so that

(1) $P(n_0)$ is <u>true</u>, and

(2) if $n \ge n_0$ and P(n) is true then P(n+1) must also be true,

<u>then</u> P(n) is true for every integer $n \ge n_0$.

Sample applications:

For every integer
$$n \ge 1$$
 we have $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
For every integer $n \ge 1$ we have $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

For every $n \ge 5$ we have $2^n > n^2$

Fibonacci sequence: $a_0 = a_1 = 1$ and for $n \ge 1$ we have $a_{n+1} = a_n + a_{n-1}$. Then for every $n \ge$ (something) we have $a_n \ge \left(\frac{3}{2}\right)^n$, and for every $n \ge 12$ we have $a_n \ge n^2$.

[For all of these the <u>method</u> by which we established the inductive step is probably more important as we go forward than the actual result!]

More Well-ordered property consequences:

If $\epsilon > 0$ then there is an $n \in \mathbb{N}$ so that $n\epsilon > 0$ (the Archimedean Principle).

[Add a positive number to itself enough times and you will get a big number!] Rationals are everywhere: If $x, y \in \mathbb{R}$ with x < y then there is an $r \in \mathbb{Q}$ so that x < r < y.

Sequences and convergence: Start with *distance*:

Absolute value: |x| = x if $x \ge 0$, otherwise it is -x. So $|x| \ge 0$ for all x.

"Triangle inequality": $|x + y| \le |x| + |y|$ for every $x, y \in \mathbb{R}$.

[Useful 'opposite' consquence: $|x - y| \ge |x| - |y|$

(useful for showing that |x - y| is <u>not</u> small!]

|x - y| = the distance between x and y. Triangle inequality: $|x - z| \le |x - y| + |y - z|$ Sequences: A sequence is essentially just a function $f : \mathbb{N} \to \mathbb{R}$. We write $f(n) = a_n$ Examples: the Fibonnaci sequence! $a_0 = a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 5, a_5 = 8, a_6 = 13$

$$a_n = 1 + (-1)^n / n$$
, $b_n = \frac{n^2 - n + 13}{3n^2 + 2n - 13}$
 $a_n = \sum_{k=1}^n \frac{1}{k^2}$

Convergence: What happens to a sequence as n gets large? E.g., for $b_n = \frac{n^2 - n + 13}{3n^2 + 2n - 13}$, observation/intuition/calculus suggests that for large $n \ b_n$ is approximately 1/3. Formalizing this notion leads us to:

 $\lim_{n \to \infty} a_n = L \text{ means that } a_n \text{ is } \underline{\text{close to }} L \text{ so long as } n \text{ is } \underline{\text{large}}.$ More precisely, a_n is as close as we want it to be to L, so long as n is $\underline{\text{large enough}}.$ This leads us to

 $\lim_{n \to \infty} a_n = L \text{ means for every } \epsilon > 0 \text{ [think: small!] there is an } N \in \mathbb{N} \text{ [}N \text{ depends on } \epsilon \text{ (!)}\text{]}$ so that $n \ge N$ implies that $|a_n - L| < \epsilon$. If this limit exists (i.e., there is an L that the sequence converges to) we say that the sequence is *convergent*. If there is no number that the sequence converges to, we say that the sequence is *divergent*. [Shorthand: we write $a_n \to L$.]

The key here is that we wish to show that $|a_n - L|$ is small; we typically do this by comparing $|a_n - L|$ to other things that we <u>know</u> are small. This, in turn, we usually do by altering $|a_n - L|$, making it larger (but not too large!), until we end up with something we can show is small (so long as n is large enough!). To help us do this we have some basic limit results:

If $a_n \to L$ and $b_b \to M$, and $k \in \mathbb{R}$ is a konstant, then: $ka_n \to kL$ $a_n + b_n \to L + M$ $a_n - b_n \to L - M$ $a_nb_n \to LM$ $a_n/b_n \to L/M$ (so long as $b_n, M \neq 0$)

Other properties we learned along the way:

If $(a_n)_{n=1}^{\infty}$ is convergent, then the set $A = \{a_n : n \in \mathbb{N}\}$ is bounded. Limits are unique! If $a_n \to L$ and $a_n \to M$, then L = M.

$$\frac{1}{n} \to 0$$

If $a_n \ge a$ for every n (eventually!) and $a_n \to L$, then $L \ge a$ If $a_n \ge b_n$ for every n and $a_n \to L$, $b_n \to M$, then $L \ge M$ If $a_n \to L$ and $L \ne 0$, then eventually $|a_n| > \frac{|L|}{2}$

Showing convergence without knowing the limit: monotonicity

 a_n is monotone increasing if $a_{n+1} \ge a_n$ for every n

 b_n is monotone decreasing if $b_{n+1} \leq b_n$ for every n

If it is one or the other, we say the sequence is *monotone* (or *monotonic*).

A monotone increasing sequence that is bounded above (i.e., for some $M \in \mathbb{R}$ we have $a_n \leq M$ for every $n \in \mathbb{N}$) converges it limit is $\sup\{a_n : n \in \mathbb{N}\}$

[A monotone decreasing sequence that is bounded below also converges!]

Example:

$$a_n = \sum_{k=1}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \frac{1}{k(k-1)} = 1 + \frac{n-1}{n} \le 2 \text{ (where the last equality is established by}$$

induction!), so $a_n \to L$ for some L [Fact: $L = \pi^2/6$...]

The Squeeze Theorem: If $a_n \leq b_n \leq c_n$ for every n and $a_n \to L$ and $c_n \to L$ as $n \to \infty$, then $b_n \to L$ and $n \to \infty$.

So, e.g., since $-1 \le \sin n \le 1$ for all $n, \frac{1}{n} \sin n \to 0$ as $n \to \infty$.

Subsequences: A subsequence amounts to choosing <u>some</u> of the terms of a sequence; formally, a subsequence is $a_{n_k} = a_{g(k)}$ for some strictly monotone increasing function $g: \mathbb{N} \to \mathbb{N}$. Subsequences inherit many of the same properties of the original sequence, for example, boundedness and convergence: if $a_n \to L$ then $a_{n_k} \to L$ for every subsequence of a_n . On the other hand,

Every bounded sequence has a <u>monotonic</u> subsequence. [But we cannot determine beforehand whether or not it will be increasing or descreasing.]

So a bounded sequence always has a convergent subsequence!