
Math 325 Topics Sheet for Exam 2

[Technically, everything from the topics sheet for exam 1, plus...]

Subsequences: A subsequence amounts to choosing some of the terms of a sequence;
formally, a subsequence is ank

= ag(k) for some strictly monotone increasing function
g : N → N. Subsequences inherit many of the same properties of the original sequence, for
example, boundedness and convergence: if an → L then ank

→ L for every subsequence of
an. On the other hand,

Bolzano-Weierstrass Theorem: Every bounded sequence has a monotonic subsequence.
[But we cannot determine beforehand whether or not it will be increasing or descreasing!]

Why? Try (e.g.) to find a monotonically increasing subsequence. If you succeed, done. If
we always fail, then the sequence of last times that do work form a decreasing subsequence!

An ‘intrinsic’ characterization of convergence: Cauchy sequences

If an → L, then the terms of the sequence eventually get close to one another: if n ≥ N
implies |an − L < ǫ then n,m ≥ N implies

|an − am| = |(an − L) + (L− am)| ≤ |an − L|+ |L− am| = |an − L|+ |am − L| < ǫ+ ǫ = 2ǫ

This leads to the notion of a Cauchy sequence:
(an)

∞

n=1 is Cauchy if for every ǫ > 0 there is an N so that n,m ≥ N implies |an − am| < ǫ.

Convergent sequences are Cauchy.
More surprisingly, every Cauchy sequence is convergent! I.e., (an)

∞

n=1 Cauchy implies that
there is an L so that an → L.

Finding L: Cauchy sequences are bounded. Then setting bn = sup{ak : k ≥ n}, the
sequence bn is monotone decreasing, and bounded below (by the lower bound of the entire
sequence an), so bn converges to some number L. Then an → L, because for for any ǫ > 0
there is an N so that for n ≥ N we have

|an − aN | < ǫ/3 and |aN − bN | < ǫ/3 and |bN − L| < ǫ/3;
adding together gives |an − L| < ǫ.

Functions of a real variable: Sequences are functions with domain N. When we expand
our allowed domains, f : D → R for some D ⊆ R, we can extend our notion of limit, as
well.

lim
x→a

f(x) = L means that |f(x) − L| is small, so long as |x − a| is small enough. One

feature: a need not be in the domain of f . If fact, even if is is, we do not care what value
f takes there; our formal definition of the limit is

For every ǫ > 0, there is a δ > 0 so that x ∈ D and 0 < |x − a| < δ implies that
|f(x)− L| < ǫ.

One sticky point: such limits need not be unique! [If x ∈ D and 0 < |x− a| < δ is satified
by no number, then L could be anything we want!] For that matter, the limit need not
exist! If it does, we say that f converges at a. For this purpose, we generally restrict
ourselves, in discussing limits, to accumulation points of D. c is an accumulation point of
D if for every δ > 0 there is an x ∈ D with 0 < |x− c| < δ. [That is, no matter how close
to c we need to be, there are points of D other than c that are at least that close.] With



this, if c is an accumulation point of D, then the limit of f at c (if it exists) is unique. One
special case: (c− δ, c+ δ) ⊆ D for some δ > 0.

Leveraging our work on sequences, lim
x→a

f(x) can be computed using sequences. lim
x→a

f(x) =

L if and only if for every sequence an with an → a and an 6= a for every n, we have
f(an) → L.

Then most of our familiar results about limits of sequences carry over to functions: for
example if f(x) → L and g(x) → M as x → a, then (f + g)(x) → L+M and (f · g)(x) →
LM .

Continuity: From calculus you are used to the idea that for many functions to compute
its limit we “plug in”. That is, lim

x→c
f(x) = f(c). We call such a function continuous at c.

If it is not continuous at c, we say it is discontinuous at c. If f : D → R is continuous at
c for every c ∈ D, we say that it is continuous on D. Continuity can be described using
ǫ’s and δ’s: f is continuous at c provided that for every ǫ > 0 there is a δ > 0 so that
|x− c| < δ implies that |f(x)− f(c)| < ǫ.

Because limits can be described using sequences, so can continuity. In particular we have
that f is continuous at c ∈ D if and only if for every sequence an → c with an ∈ D for
every n, we have f(an) → f(c).

This enables us to use results about sequences to prove results about continuous functions.
For example, if f and g are both continuous at c then so are f + g, f − g, f · g, and f/g
(so long, for the last, as g(c) 6= 0).

Possibly the two most important results about continuous functions are:

Intermediate Value Theorem: If f : [a, b] → R is continuous on [a, b] and D lies between
f(a) and f(b), then there is a c ∈ [a, b] so that f(c) = D.

Extreme Value Theorem: If f : [a, b] → R is continuous on [a, b], then there are c, d ∈ [a, b]
so that f(c) ≤ f(x) ≤ f(d) for every x ∈ [a, b].

The IVT can be used in root-finding: if f is continuous on an interval and f(α) < 0 < f(β),
then there is a root of f lying between α and β. By repeatedly narrowing the distance
between α and β (like, for example, taking their midpoint), we can find succesively better
approximations to the root.

The IVT also allows us to show that every (positive) real number has an n-th root, for
any natural number n; f(x) = xn − c always has a root.

The EVT tells us that maxima and minima exist, for function defined on a closed interval.
[Techniques of calculus tells us how to find them, for differentiable functions.]

Inverse functions. Functions that are one-to-one have inverses. A continuous function
f : I → R that is one-to-one must be either monotonically increasing or monotonically
decreasing (in the ‘strong’ sense: we cannot have x < y and f(x) = f(y)). [This has a
rather tedious proof...]. But more importantly, as a result a one-to-one continuous function
has a continuous inverse. This is because if (say) f is increasing, then g = f−1 is also
increasing, and given a ∈ f(I) and ǫ > 0, we have f(g(a)− ǫ) < f(g(a)) = a < f(g(a)+ ǫ),
so there is a δ > 0 with f(g(a)− ǫ) < a − δ < a + δ < f(g(a) + ǫ), so |x − a| < δ means



a − δ < x < a + δ, so f(g(a) − ǫ) < f(g(x)) < f(g(a) + ǫ), so (since g is increasing!)
g(a)− ǫ = g(f(g(a)− ǫ)) < g(f(g(x))) = g(x) < g(f(g(a) + ǫ)) = g(a) + ǫ, so g(a)− ǫ <
g(x) < g(a) + ǫ, that is, |g(x)− g(a)| < ǫ .

This, in turn, tells us that many of our favorite functions are continuous. Since f(x) = xn

is continuous, it is one-to-one (for x ≥ 0 if n is even), its inverse g(x) = x1/n is continuous.
Also, for example, f(x) = x5 +5x3 +17x− 4 is continuous and one-to-one (by calculus, or
directly comparing output for x < y), so it’s inverse, which we (probably) can’t express in
an ‘elementary’ way, is continuous!

Uniform Continuity: In many situations, continuity alone is not ‘enough’ to obtain the
results that we might want. For example, for each x ∈ [0, 1] fn(x) = xn → 0 if x < 1 and
→ 1 if x = 1. Each of the functions involved is continuous, but their ‘limit’ is not! The
‘problem’ is that continuity is defined for each point: the δ > 0 we find is chosen with
knowledge of both ǫ > 0 and the point c ∈ D at which continuity is being studied. So δ is
a function of both ǫ and c.

A stronger form of continuity is obtained by eliminating one of these dependences: f :
D → R is uniformly continuous on D if for every ǫ > 0 there is a δ > 0 so that x, y ∈ D
and |x− y| < δ implies that |f(x)− f(y)| < ǫ. That is, δ depends ony on ǫ, not on which
points are input to f . A uniformly continuous function is therefore continuous, but the
opposite need not be true. f(x) = 1/x is continuous on the interval (0,∞), but is not
uniformly continuous on that interval.

But if the domain of f is a closed interval [a, b], then continuity does imply uniform conti-
nuity. [Our proof relied on the fact that bounded sequences have convergent subsequences!]

Uniform continuity is an important component of many of the results we will study for the
remainder of the semester!


