Math 325, Section 1

Exam 1 Practice Exam Solutions

r+y

1. Show that if x,y > 0 the n the arithmetic mean m = and the geometric mean

u = /Ty always satisfies m > p. Show by an example that this inequality can be
strict.

r+vy

2
5 V) = e =2VEy+y = (Vi =2y + (V) =
(vV/x — \/y)?, then we find, in particular, that 2(m — u) > 0, s0o m — p > 0, so m > p, as
desired.

If we compute 2(m—p) = 2(

Essentially any pair of (distinct!) non-negative number will have m > pu; for example,
r=landy=9givem=5and p=3,and 5> 3.

2. Show, using the Rational Roots Theorem, that o = v/2 + /7 is not a rational number.

There are (at least) two ways to show this. Via the Rat’l Roots Thm, we find a polynomial
having « as a root:

a?=2+7,s0a?-2=1750 (a?—-2)?2=7, 50
(@2—2)2-7T=0a*—-40’>+4-T=a*—4a2-3=0.
So a is a root of the polynomial p(z) = x* — 422 — 3. But the Rat’l Roots Thm. tells us
that the only possible rational roots of this polynomial are 1, —1, 3, and/or —3. But we can
either plug all of these into p and note that none of them are roots of p (this is probably the
preferred way?), or we can be a little sneakier. Note that a? = 241/7 > 2+v/4 = 2+2 = 4,
soa>2,but a2 =2+V7<24+V9=2+3=5<9, s0a<3. Soa cannot be equal
to any of these possible roots. In either case we then know that «, which is a root of p,
cannot be equal to any of the possible rational roots of p, so a cannot be rational!

Alternate proof: suppose o = p/q is rational. Then a? = p?/¢? is also rational, so
o? —2 = (p? — 2¢%)/q? is rational. But! by the work above, a* —2 = /7 = j is then
rational. But 3 is a root of 7(z) = x? — 7, whose only possible rational roots, 1,—1,7, —7,

aren’t roots! So (8 isn’t rational. But if « is rational so is 5 ! So a cannot be rational.

3. We will define a sequence (a,)52; by setting a; = 2, and for n > 1 (inductively)
setting

Ap+1 = 3+ \/26Ln .

Show that this sequence is both monotonically increasing and bounded from above
(so the sequence converges).

as =3+vV2-2=3++V4=3+2=05>2=aqy, soas > ai, which gets us started
on an induction. If we now suppose (as our inductive hypothesis) that a,+1 > a,, then
20,41 > 2a, (since 2a,41 — 2a, = 2(an+1 — an) is the product of a positive number
(2) and a non-negative one). But then /2a,4+1 > v/2a,, from a result in class, and so

an+2 = 3+ V2an41 > 3+ V2a, = ap41.




S0 ap41 > ap implies that a,4+2 > a,41, giving our inductive step. So a,4+1 > a, for every
n > 1, by induction.

To show that the sequence is bounded, we could just pick an impossibly large number and
give it a try. Or we could use techniques like we have before to find out when M = 3+v/2M,
and use that. Or we could note that the thing which controls the size of a,,11 is v/2a,,, which
for a, “large” is a lot smaller than a,,, for example, a,, = 50 gives a,41 = 3 + /100 = 13,
which is a lot smaller than 50.

So let’s pick M = 50, say, and show that a,, < 50 for every n, by induction! a; = 2 < 50 is
true, so our base case works. Then if a,, < 50, then 2a —n < 100j so /2a,, < v/100 = 10,
SO Gni1 = 3+ v/2a, <3+ 10 =13 < 50. This is our inductive step; a,, < 50 implies that
ant+1 < 50. So a, <50 for all n > 1, by induction; so the sequence is bounded above.

Because it is a monotone increasing sequence which is bounded above, it then follows that
the sequence converges.

[N.B.: We can, in fact, find the limit of the sequence; as with examples from class our limit

properties allow us to conclude that the limit, L, satisfies L = 3++v/2L, so (L—3)2-2L =

L? — 8L +9 = 0. Using the quadratic formula, we conclude that
L=(8++64—-36)/2=(8+2V7)/2=4+T.

Since L > as = 5 (since a,, > ao for every n > 2) and 4 — 7 <4 -4 =4-2=2, we

conclude that L = 4 + /7]

4. Given sequences (a,)52; and (b,)02 1, show that if the sequences
Cp = an + by, and d, =a, — b,

both converge, then the sequences a,, and b,, also both converge!

Since ¢, and d,, both converge, we know that ¢, + d,, = (a, + by,) + (a,, — by) = 2a,, also
converges. So a, = (1/2)(2a,) also converges!

But then a,, and ¢, = a, + b, converge, and so ¢, — a, = (an + bp) — a, = b, must
converge, as well. So both (a,)72; and (b,)52;must be convergent sequences.

A somewhat different way to write the same thing is:

Ife, =a,+0b, - L andd, = a, — b, — M, then ¢, +d,, = 2a,, - L+ M, so
an, = (1/2)(2a,) — (1/2)(L + M). In particular a,, has a limit, so it converges! Then
b, = (ap +by) —an, - L — (1/2)(L+ M) = (1/2)(L — M), so b, has a limit, so b,
converges!

[There are several other, roughly equivalent, ways to see how to build a,, and b, out of ¢,
and d,,, leading to the same conclusions.|

5. Use induction to show that for every n>1,

< 1 na@Bn+5)
a”_g FE+2) At Dtz




(Hint: write out what f(n+1) is; it’ll help.

. 1 1 8 (H)(3-145)
b =1 dweh = T N — 5 = =
Our base case is n , and we have aq M +2) 53123 41+1)(1+2)
as desired.
1 ~ n(3n+5)

T3 " At Dint2) hen

For the inductive step, if we suppose that a,, = Z ik

1 _ n(3n+5) T
n+1D(n+3) 4n+1)n+2) m+1)(n+3)
denominator, this last sum is equal to

n(3n+5)(n+ 3) 4(n+2) _ n(3n?+5n+9n +15) 4 4n + 8
A4n+1)(n+2)(n+3) 4(n—i—1)(n—l—2)(n+3) B A4n+1)(n+2)(n+3)
30 +14n* +19n+8  (n+1)(3n* + 11n +8) 3n? 4+ 11n + 8 (Bn+8)(n+1)

dn+1)(n+2)n+3) 4n+Dn+2)(n+3) 4n+2)(n+3) 4n+2)(n+3) -
(n+1)(3(n+1)+5) T
4((n+1)+1)((n+1)+2)

So we have shown that a; = f(1), and a,, = f(n) implies that a,+1 = f(n+ 1). So,
by induction, we have shown that a,, = f(n) for every n € N with n > 1, as desired.

1 1.1 1
An alternate approach: Noting that m = §(E ~ii2
(41— ﬁ - ﬁ) (*), since (check!) this is true for n = 1,
and then in the inductive step

An41 = Ay + Putting over a common

), we can show (by

induction!) that a, =

_1¢1,1 1 1 1 _ 11,1 1 1 1 1 _
Gnt1 = §(T+§_(n—|—1)_(n+2)+(n+1)(n+3) - 5([T+§_(n—|—1)_(n—|—2)]+(n—|—1)_(n+3)) -
1,1 1 1 1 :
3(1 T3~ —r9 — Grgy)s as desired.

Putting the expression (*) over a common denominator yields the result.

6. Use the Rational Roots Theorem to show that r = /2 — /5 is a not a rational number.

If r = v/2—+/5, then o? = (f f) = 2—2v/2v/5+5 = 7—2v/10, Then r2—7 = 2V/10,
0 (r2—7)2=4-10=40. 50 0= (1> = 7)2 =40 = r* — 1472 + 49 — 40 = r* — 147? + 9.

So r is a root of the polynomial f(x) = z*—142?+9 . But the Rational Roots Theorem
tells us that if f has a rational root, then it must be one of the numbers —1,1, —3, 3, —9, or
9 (since these are the rational numbers a/b with a dividing 9 and b dividing 1). But we can
check that none of these are roots: f(£1) =1—-144+9=—-4#0, f(£3) =81—-14-94+9 =
90 — 126 = —36 # 0, and f(£9) =812 —14-81+9 =64-81+9 > 0. So f has no rational
roots, so «, which is a root, cannot be rational.

n2—n+1

7. Find the limit of the sequence a, =
3n? —1

and prove you are right using the e-N definition of the limit. [Also: show how to do this
quicker using our limit theorems!]



n*—n+1_1—(1/n)+(1/n)?

3n2 -1 3 —(1/n)?
since the limit of a quotient is the quotient of the limits, and, since 1/n — 0 as n — oo, the
numerator converges to 1 —0+ (0)2 = 1, since limits behave well under sum and difference
and product, while the denominator converges to 3 — (0)? for the same reasons.

has limit 1/3,

Our limit theorems tell us that a,, =

Having found the limit we prove that it works by computing

@ _1‘_| n—l—l__‘ ‘(nQ—n+1)(3)—(1)(3n2—1)| B |3n2—3n—l—3—3n2—|—1‘ B
"3 32— B (3n2 —1)(3) B (3n2 —1)(3) B
| 4—3n | = 3n —4
(3n2 —1)(3)'  3(3n2—-1)’
4 —
since the numerator of _d=dn is negative for n > 2 and the denominator is
(3n2 —1)(3)

positive for n > 1. This is the quantity that we wish to show can be made small (< €), so

long as n is large enough.

I, 3n-4 3n 3n 31
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at every step we either made the numerator larger or the denominator smaller (but not

negative!). So given an € > 0, if we choose an N € N so that N > %, then n > N implies
1 1 1 1

that — — =
at |a, — |<2 <2N<N<1/e €

[There are many other ways that we could have done this.]

But |a, —

1
So for every € > 0j we can find an N € N so that n > N implies that |a,, — §| <e
SO a,, —

%asn—>oo.



