
Math 325, Section 1

Exam 1 Practice Exam Solutions

1. Show that if x, y ≥ 0 the n the arithmetic mean m =
x+ y

2
and the geometric mean

µ =
√
xy always satisfies m ≥ µ. Show by an example that this inequality can be

strict.

If we compute 2(m−µ) = 2(
x+ y

2
−√

xy) = x−2
√
xy+y = (

√
x
2−2

√
x
√
y+(

√
y)2 =

(
√
x −√

y)2, then we find, in particular, that 2(m − µ) ≥ 0, so m − µ ≥ 0, so m ≥ µ, as
desired.

Essentially any pair of (distinct!) non-negative number will have m > µ; for example,
x = 1 and y = 9 give m = 5 and µ = 3, and 5 > 3 .

2. Show, using the Rational Roots Theorem, that α =
√

2 +
√
7 is not a rational number.

There are (at least) two ways to show this. Via the Rat’l Roots Thm, we find a polynomial
having α as a root:

α2 = 2 +
√
7, so α2 − 2 =

√
7, so (α2 − 2)2 = 7, so

(α2 − 2)2 − 7 = α4 − 4α2 + 4− 7 = α4 − 4α2 − 3 = 0.

So α is a root of the polynomial p(x) = x4 − 4x2 − 3. But the Rat’l Roots Thm. tells us
that the only possible rational roots of this polynomial are 1,−1, 3, and/or −3. But we can
either plug all of these into p and note that none of them are roots of p (this is probably the
preferred way?), or we can be a little sneakier. Note that α2 = 2+

√
7 > 2+

√
4 = 2+2 = 4,

so α > 2, but α2 = 2 +
√
7 ≤ 2 +

√
9 = 2 + 3 = 5 < 9, so α < 3. So α cannot be equal

to any of these possible roots. In either case we then know that α, which is a root of p,
cannot be equal to any of the possible rational roots of p, so α cannot be rational!

Alternate proof: suppose α = p/q is rational. Then α2 = p2/q2 is also rational, so
α2 − 2 = (p2 − 2q2)/q2 is rational. But! by the work above, α2 − 2 =

√
7 = β is then

rational. But β is a root of r(x) = x2 − 7, whose only possible rational roots, 1,−1, 7,−7,
aren’t roots! So β isn’t rational. But if α is rational so is β ! So α cannot be rational.

3. We will define a sequence (an)
∞

n=1 by setting a1 = 2, and for n ≥ 1 (inductively)
setting

an+1 = 3 +
√
2an .

Show that this sequence is both monotonically increasing and bounded from above
(so the sequence converges).

a2 = 3 +
√
2 · 2 = 3 +

√
4 = 3 + 2 = 5 ≥ 2 = a1, so a2 ≥ a1, which gets us started

on an induction. If we now suppose (as our inductive hypothesis) that an+1 ≥ an, then
2an+1 ≥ 2an (since 2an+1 − 2an = 2(an+1 − an) is the product of a positive number
(2) and a non-negative one). But then

√
2an+1 ≥

√
2an, from a result in class, and so

an+2 = 3 +
√
2an+1 ≥ 3 +

√
2an = an+1.
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So an+1 ≥ an implies that an+2 ≥ an+1, giving our inductive step. So an+1 ≥ an for every
n ≥ 1, by induction.

To show that the sequence is bounded, we could just pick an impossibly large number and
give it a try. Or we could use techniques like we have before to find out whenM = 3+

√
2M ,

and use that. Or we could note that the thing which controls the size of an+1 is
√
2an, which

for an “large” is a lot smaller than an, for example, an = 50 gives an+1 = 3 +
√
100 = 13,

which is a lot smaller than 50.

So let’s pick M = 50, say, and show that an ≤ 50 for every n, by induction! a1 = 2 ≤ 50 is
true, so our base case works. Then if an ≤ 50, then 2a− n ≤ 100¡ so

√
2an ≤

√
100 = 10,

so an+1 = 3 +
√
2an ≤ 3 + 10 = 13 ≤ 50. This is our inductive step; an ≤ 50 implies that

an+1 ≤ 50. So an ≤ 50 for all n ≥ 1, by induction; so the sequence is bounded above.

Because it is a monotone increasing sequence which is bounded above, it then follows that
the sequence converges.

[N.B.: We can, in fact, find the limit of the sequence; as with examples from class our limit
properties allow us to conclude that the limit, L, satisfies L = 3+

√
2L, so (L−3)2−2L =

L2 − 8L+ 9 = 0. Using the quadratic formula, we conclude that
L = (8±

√
64− 36)/2 = (8± 2

√
7)/2 = 4±

√
7.

Since L ≥ a2 = 5 (since an ≥ a2 for every n ≥ 2) and 4 −
√
7 ≤ 4−

√
4 = 4 − 2 = 2, we

conclude that L = 4 +
√
7.]

4. Given sequences (an)
∞

n=1 and (bn)
∞

n=1, show that if the sequences

cn = an + bn and dn = an − bn

both converge, then the sequences an and bn also both converge!

Since cn and dn both converge, we know that cn + dn = (an + bn) + (an − bn) = 2an also
converges. So an = (1/2)(2an) also converges!

But then an and cn = an + bn converge, and so cn − an = (an + bn) − an = bn must
converge, as well. So both (an)

∞

n=1 and (bn)
∞

n=1must be convergent sequences.

A somewhat different way to write the same thing is:

If cn = an + bn → L and dn = an − bn → M , then cn + dn = 2an → L + M , so
an = (1/2)(2an) → (1/2)(L + M). In particular an has a limit, so it converges! Then
bn = (an + bn) − an → L − (1/2)(L + M) = (1/2)(L − M), so bn has a limit, so bn
converges!

[There are several other, roughly equivalent, ways to see how to build an and bn out of cn
and dn, leading to the same conclusions.]

5. Use induction to show that for every n≥1,

an=
n
∑

k=1

1

k(k + 2)
=

n(3n+ 5)

4(n+ 1)(n+ 2)
= f(n).
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(Hint: write out what f(n+1) is; it’ll help.

Our base case is n = 1, and we have a1 =
1

(1)(1 + 2)
=

1

3
=

8

4 · 2 · 3 =
(1)(3 · 1 + 5)

4(1 + 1)(1 + 2)
,

as desired.

For the inductive step, if we suppose that an =
n
∑

k=1

1

k(k + 2)
=

n(3n+ 5)

4(n+ 1)(n+ 2)
, then

an+1 = an +
1

(n+ 1)(n+ 3)
=

n(3n+ 5)

4(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 3)
. Putting over a common

denominator, this last sum is equal to

n(3n+ 5)(n+ 3)

4(n+ 1)(n+ 2)(n+ 3)
+

4(n+ 2)

4(n+ 1)(n+ 2)(n+ 3)
=

n(3n2 + 5n+ 9n+ 15) + 4n+ 8

4(n+ 1)(n+ 2)(n+ 3)
=

3n3 + 14n2 + 19n+ 8

4(n+ 1)(n+ 2)(n+ 3)
=

(n+ 1)(3n2 + 11n+ 8)

4(n+ 1)(n+ 2)(n+ 3)
=

3n2 + 11n+ 8

4(n+ 2)(n+ 3)
=

(3n+ 8)(n+ 1)

4(n+ 2)(n+ 3)
=

(n+ 1)(3(n+ 1) + 5)

4((n+ 1) + 1)((n+ 1) + 2)
= f(n+ 1) .

So we have shown that a1 = f(1), and an = f(n) implies that an+1 = f(n + 1). So,
by induction, we have shown that an = f(n) for every n ∈ N with n ≥ 1, as desired.

An alternate approach: Noting that
1

k(k + 2)
=

1

2
(
1

k
− 1

k + 2
), we can show (by

induction!) that an = 1
2(

1
1 + 1

2 − 1
(n+1) − 1

(n+2) ) (*), since (check!) this is true for n = 1,

and then in the inductive step

an+1 = 1
2
( 1
1
+1

2
− 1

(n+1)
− 1

(n+2)
+ 1

(n+1)(n+3)
= 1

2
([ 1

1
+1

2
− 1

(n+1)
− 1

(n+2)
]+ 1

(n+1)
− 1

(n+3)
) =

1
2
( 1
1
+ 1

2
−− 1

(n+2)
− 1

(n+3)
), as desired.

Putting the expression (*) over a common denominator yields the result.

6. Use the Rational Roots Theorem to show that r =
√
2−

√
5 is a not a rational number.

If r =
√
2−

√
5, then α2 = (

√
2−

√
5)2 = 2−2

√
2
√
5+5 = 7−2

√
10, Then r2−7 = 2

√
10,

so (r2 − 7)2 = 4 · 10 = 40. so 0 = (r2 − 7)2 − 40 = r4 − 14r2 + 49− 40 = r4 − 14r2 + 9.

So r is a root of the polynomial f(x) = x4−14x2+9 . But the Rational Roots Theorem
tells us that if f has a rational root, then it must be one of the numbers −1, 1,−3, 3,−9, or
9 (since these are the rational numbers a/b with a dividing 9 and b dividing 1). But we can
check that none of these are roots: f(±1) = 1−14+9 = −4 6= 0, f(±3) = 81−14 ·9+9 =
90− 126 = −36 6= 0, and f(±9) = 812 − 14 · 81 + 9 = 64 · 81 + 9 > 0. So f has no rational
roots, so α, which is a root, cannot be rational.

7. Find the limit of the sequence an =
n2 − n+ 1

3n2 − 1

and prove you are right using the ǫ-N definition of the limit. [Also: show how to do this
quicker using our limit theorems!]
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Our limit theorems tell us that an =
n2 − n+ 1

3n2 − 1
=

1− (1/n) + (1/n)2

3− (1/n)2
has limit 1/3,

since the limit of a quotient is the quotient of the limits, and, since 1/n → 0 as n → ∞, the
numerator converges to 1−0+(0)2 = 1, since limits behave well under sum and difference
and product, while the denominator converges to 3− (0)2 for the same reasons.

Having found the limit we prove that it works by computing

|an−
1

3
|= |n

2 − n+ 1

3n2 − 1
−1

3
| = | (n

2 − n+ 1)(3)− (1)(3n2 − 1)

(3n2 − 1)(3)
| = |3n

2 − 3n+ 3− 3n2 + 1

(3n2 − 1)(3)
| =

| 4− 3n

(3n2 − 1)(3)
| = 3n− 4

3(3n2 − 1)
,

since the numerator of
4− 3n

(3n2 − 1)(3)
is negative for n ≥ 2 and the denominator is

positive for n ≥ 1. This is the quantity that we wish to show can be made small (< ǫ), so
long as n is large enough.

But |an − 1

3
| =

3n− 4

3(3n2 − 1)
<

3n

3(3n2 − 1)
<

3n

3(3n2 − n2)
=

3n

3(2n2)
=

1

2n
, since

at every step we either made the numerator larger or the denominator smaller (but not
negative!). So, given an ǫ > 0, if we choose an N ∈ N so that N ≥ 1

ǫ
, then n ≥ N implies

that |an − 1

3
| < 1

2n
<

1

2N
<

1

N
<

1

1/ǫ
= ǫ.

[There are many other ways that we could have done this.]

So for every ǫ > 0¡ we can find an N ∈ N so that n ≥ N implies that |an − 1

3
| < ǫ.

SO an → 1
3 as n → ∞ .
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