
Math 325, Section 1

Exam 2 Practice problems: solutions

1. Show that every subsequence (ank
)∞
k=1

of a monotonic sequence (an)
∞

n=1 is also monotonic.

Suppose first that an is monotone increasing, so n ≥ m implies that an ≥ am. [If you take
the approach that increasing means that an+1 ≥ an for every n ∈ N, then this statement
can be established by induction on n: for n = m we have an = am ≥ am, and if an ≥ am
then an+1 ≥ an ≥ am¡ so an+1 ≥ am, giving the inductive step.]

Now suppose that ank
is a subsequence of an. Then nk+1 > nk for every k, and so since

an is increasing we have that ank+1
≥ ank

. Then by induction we again have that r ≥ s
implies that anr

≥ ans
, so ank

is monotone increasing. This establishes our result.

A symmetric argument, reversing all of the inequalities involving the sequence an, estab-
lishes the analogous result for monotone decreasing sequences.

2. Show, by example, that it is possible for a function f : D → R to be continuous, for a
number a to be an accumulation point of D, but the limit lim

x→a
f(x) does not exist.

[This problem is worded differently than we would word it this semester. Think that
D = (a, b) for some b > a.]

We wish the limit not to exist; but if a ∈ D then continuity at a would require that
lim
x→a

f(x) = f(a), and so in particular the limit must exist! So our example must rely on

the number a not being in the domain D of our function f .

From here we can construct many examples; forcing the limit to not exist can be accom-
plished by making f ‘blow up’ as x approaches a, or oscillate wildly, or approach one value
from one side and another value from the other. So, for example,

f(x) = 1/x, with domain D = (0,∞), has 0 as an accumulation point of D but the limit
as x approach 0 does not exist, because if 1/x → L as x → 0, then x = 1/(1/x) → 1/L
so by uniqueness of limits, 1/L = 0, so 1 = L · 0 = 0, which is absurd. Note that f is
continuous on D, since it is the reciprocal of x, whic his continuous and non-zero on D.

g(x) = sin(1/x), with domain (0,∞), has 0 as an accumulation point of D but the limit
as x approach 0 does not exist, because as x → 0, 1/x grows arbitrarily large, so sin(1/x)
takes the values 1 and −1 repeatedly as x → 0. Put more bluntly, sin(1/(1/(n+1/2)π)) =
sin(xn) = 1 and sin(1/(1/(n + 3/2)π)) = sin(yn) = −1, with xn → 0 and yn → 0, which
violates the uniquness of limits (since 1 6= −1), unless g(x) has no limit as x → 0. Note
that g is continuous on D, since it is the composition of sin(x) and the function f above.

h(x) = x/|x|, with domain D = R \ {0} is continuous, since it is −1 for x < 0 and 1 for
x > 0, so for any point c in D there is a δ > 0 so that h is constant (hence continuous) on
(c− δ, c+ δ). But the limit of h as x approaches 0 does not exist, since there are sequences
xn = −1/n and yn = 1/n so that h(xn) = −1 → −1 and h(yn) = 1 → 1, so for the limit
to exist we would require 1 = −1, which is (still) absurd.

3. Show that if f : [0, 2] → R is continuous and f(0) = f(2), then there is a(t least one)
c ∈ [0, 1] satisfying f(c) = f(c+ 1).

[Hint: construct a second function that you can apply the intermediate value theorem to,
to get the conclusion that we want!]
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The function f1 = f : [0, 1] → R (i.e., with smaller domain) is continuous, as is f2 =
f : [1, 2] → R. Also, the function g(x) = x + 1, g : [0, 1] → [1, 2] is continuous (it
is a polynomial!). So the function h : [0, 1] → R given by h(x) = f(x) − f(x + 1) =
f1(x)− f2(g(x)) is continuous (as the difference of two continuous functions, one of them
continuous as the composition of two continuous functions).

But then h(0) = f(0)−f(1) = α and h(1) = f(1)−f(2) = f(1)−f(0) = −[f(0)−f(1)] =
−α. So one of three things is true: α > 0 and so −α = f(1) ≤ 0 ≤ f(0) = α, or α >< 0
and so α = f(0) ≤ 0 ≤ f(1) = −α, or α = 0 and so α = f(0) ≤ 0 ≤ f(1) = −α. In every
case, 0 lies between h(0) and h(1), and so by the Intermediate Value Theorem, there is a
c ∈ [0, 1] so that h(c) = f(c) − f(c + 1) = 0, i.e., f(c) = f(c + 1). This establishes our
result.

4. Show that if A,B,C ⊆ R and the functions f : A → B and g : B → C are both uniformly

continuous, then the composition g ◦ f : A → C [defined by (g ◦ f)(x) = g(f(x))] is also
uniformly continuous.

Since f is uniformly continuous, for every η > 0 there is a δ > 0 so that, if x, y ∈ A and
|x− y| < δ, then |f(x)− f(y)| < η.

Since g is uniformly continuous, for every ǫ > 0 there is an η > 0 so that, if z, w ∈ B and
|z − w| < η, then |g(z)− g(w)| < ǫ.

But now suppose that ǫ > 0 is given; then pick η > 0 as in the second statement, and then
pick a δ > 0 as in the first statement. Then if x, y ∈ A and |x − y| < δ, then we have
|f(x)− f(y)| < η. But then f(x), f(y) ∈ B, and so we have g(f(x))− g(f(y))| < ǫ .

So we have that for every ǫ > 0 there is a δ > 0 so that if x, y ∈ A and |x− y| < δ, then
|(g ◦ f)(x)− (g ◦ f)(y)| = |g(f(x))− g(f(y))| < ǫ, and so g ◦ f is uniformly continuous.

5. Let (an)
∞

n=1, (bn)
∞

n=1 be bounded sequences, and suppose that, for some subsequence
(bnk

)∞
k=1

, ak ≤ bnk
for all k. Show that lim

n→∞

an ≤ lim
n→∞

bn provided both limits exist!

(Hint: You can take the high road, and just quote theorems, but there is also another
way.)

Let an → L and bn → M as n → ∞. Then since a subsequece of a convergent sequence
converges to the same limit, we know that bnk

→ M as k → ∞. But since ak → L
as k → ∞ (we are just changing names) and ak ≤ bnk

, this implies that L ≤ M , since
bnk

− ak ≥ 0 implies that bnk
− ak → M − L ≥ 0.

That, I think, was the high road; I’m no longer sure what I thought the “other way” was....

6. Suppose that f : [0, 1] → [0,∞) is a continuous function, with the property that, for all
x ∈ [0, 1], there is a y ∈ [0, 1] such that f(y) ≤ (1/2)f(x). Show that there is a c ∈ [0, 1]
such that f(c) = 0.

(Hint: use the hypothesis to find a sequence xn in [0, 1] such that f(xn) → 0.)

If we choose any x1 ∈ [0, 1] and set f(x1) = r, then our hypothesis tells us that we can
find an x2 ∈ [0, 1] with f(x2) ≤ f(x1)/2 = r/2. Continuing, we can then find x3 ∈ [0, 1]
with f(x3) ≤ f(x2)/2, so f(x3) ≤ r/4 = r/22. This suggests an induction argument:

Claim: for every n ∈ N, there is an xn ∈ [0, 1] with f(xn) ≤ r/2n−1. Proof: x2 provides
the base case. If, by induction, we have xn, then the problem assumption yields an x with
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f(x) ≤ f(xn)/2 ≤ (r/2n−1)/2 = r/2n, so xn+1 = x gives our inductive step. So the claim
is true by induction.

Having found xn ∈ [0, 1] with 0 ≤ f(xn) ≤ r/2n−1, then since r/2n−1 → 0 as n → ∞, the
Squeeze Play Theorem tells us that f(xn) → 0 as n → ∞.

But now (xn)
∞

n=1 is a bounded sequence, so it has a convergent subsequence xnk
→ z ∈

[0, 1]. Since f is continuous, we know that f(xnk
) → f(z) as k → ∞. But since (f(xnk

))∞
k=1

is a subsequence of (f(xn))
∞

n−1, we also know that f(xnk
) → 0 as k → ∞. So f(z) = 0

(otherwise we can use ǫ = |f(z) − 0| > 0 to show that one of our limit results is false...).
So: we have found a z ∈ [0, 1] with f(z) = 0, as desired.

7. Show that there is no continuous function F : R → R satisfying f([0, 1]) = [0,∞) .

Suppose there were such a function. Then the Extreme Value Theorem would tell us that
there is a c ∈ [0, 1] so that 0 ≤ f(x) ≤ f(c) for every x ∈ [0, 1]. But this then means that
there is no x so that f(x) = f(c) + 1. So f cannot take on every non-negative value, so it
cannot have image [0,∞).

Alternatively, we could argue more fundamentally: if there were such an F , then for every
n ∈ N thre is an xn ∈ [0, 1] so that f(xn) ≥ n. The sequence (xn)

∞

n=1, since it is bounded,
as a convergent subsequence, xnk

, converging to z ∈ [0, 1] (since 0 ≤ xnk
≤ 1 for every

k). But then continuity requires that f(xnk
) → f(z) ∈ R as k → ∞, but f(xnk

≥ nk ≥ k
implies that f(xnk

) → ∞. This contradiction shows that F cannot exist.

8. Show that the function f :R→R defined by

f(x) = x3 + 3x− 7

has exactly one root between −1 and 2 (i.e., show it has at least one root, and doesn’t
have two!).

f : [−1, 2] → R is continuous, since f is a polynomial. In addition, f(−1) = (−1)3 +
3(−1)− 7 = −1− 2− 7 = −11 < 0, and f(2) = 23 +3 · 2− 7 = 8+ 6− 7 = 7 > 0. So 0 lies
between f(−1) and f(2), and so the intermediate value theorem tells us that f(x) = 0 for
at least one x ∈ [−1, 2].

To show that there cannot be two such values of x, we can show that x < y implies that
f(x) < f(y); that is, f is an increasing function. If we had derivatives, we could argue
that f ′(x) = 3x2 + 3 ≥ 3 > 0 implies that f is increasing, but we don’t! Instead, as argue
directly:

f(y)−f(x) = (y3+3y−7)−(x3+3x−7) = (y3−x3)+3(y−x) = (y−x)(y2
x
y2
x
)+3(y−x) =

(y − x)((y + x

2
)2 + 3

4
x2 + 3)

(by completing the square), and y−x is positive (by hypothesis) and (y+ x

2
)2+ 3

4
x2+3) is

a sum of non-negative and positive numbers, so it positive. So their product, f(y)− f(x),
is positive, so f(y) > f(x).
So if f(x) = f(y) and x 6= y, then either x < y (so f(x) < f(y), a contradiction) or y < x
(so f(y) < f(x), a contradiction!). So x 6= y implies that f(x) 6= f(y), so f can take the
given value (like 0 (!)) at most once.
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