Math 325, Section 1

Exam 2 Practice problems: solutions

1. Show that every subsequence (an, )5, of a monotonic sequence (a, )52 is also monotonic.

Suppose first that a,, is monotone increasing, so n > m implies that a,, > a,,. [If you take
the approach that increasing means that a,+1; > a, for every n € N, then this statement
can be established by induction on n: for n = m we have a,, = a,, > a,,, and if a,, > a,,
then an,41 > apn > amj SO apy1 > ap, giving the inductive step.]

Now suppose that a,, is a subsequence of a,,. Then ny1 > ny for every k, and so since
an is increasing we have that a,,,, > an,. Then by induction we again have that r > s
implies that a,, > a,_, so a,, is monotone increasing. This establishes our result.

A symmetric argument, reversing all of the inequalities involving the sequence a,,, estab-

lishes the analogous result for monotone decreasing sequences.

2. Show, by example, that it is possible for a function f : D — R to be continuous, for a
number a to be an accumulation point of D, but the limit lim f(x) does not exist.
Tr—a

[This problem is worded differently than we would word it this semester. Think that
D = (a,b) for some b > a.]

We wish the limit not to exist; but if @ € D then continuity at @ would require that
lim f(z) = f(a), and so in particular the limit must exist! So our example must rely on
Tr—a

the number a not being in the domain D of our function f.

From here we can construct many examples; forcing the limit to not exist can be accom-
plished by making f ‘blow up’ as x approaches a, or oscillate wildly, or approach one value
from one side and another value from the other. So, for example,

f(z) = 1/z, with domain D = (0,00), has 0 as an accumulation point of D but the limit
as x approach 0 does not exist, because if 1/x — L as x — 0, then z = 1/(1/z) — 1/L
so by uniqueness of limits, 1/L = 0, so 1 = L -0 = 0, which is absurd. Note that f is
continuous on D, since it is the reciprocal of x, whic his continuous and non-zero on D.

g(x) = sin(1/z), with domain (0, 00), has 0 as an accumulation point of D but the limit
as = approach 0 does not exist, because as x — 0, 1/x grows arbitrarily large, so sin(1/z)
takes the values 1 and —1 repeatedly as  — 0. Put more bluntly, sin(1/(1/(n+1/2)7)) =
sin(z,) = 1 and sin(1/(1/(n + 3/2)x)) = sin(y,) = —1, with z,, — 0 and y, — 0, which
violates the uniquness of limits (since 1 # —1), unless g(x) has no limit as * — 0. Note
that g is continuous on D, since it is the composition of sin(x) and the function f above.
h(x) = x/|z|, with domain D = R\ {0} is continuous, since it is —1 for z < 0 and 1 for
x > 0, so for any point ¢ in D there is a 6 > 0 so that h is constant (hence continuous) on
(c—9,c+6). But the limit of h as x approaches 0 does not exist, since there are sequences
xn, = —1/n and y,, = 1/n so that h(z,) = =1 — —1 and h(y,) = 1 — 1, so for the limit
to exist we would require 1 = —1, which is (still) absurd.

3. Show that if f : [0,2] — R is continuous and f(0) = f(2), then there is a(t least one)
c € [0, 1] satisfying f(c) = f(c+1).
[Hint: construct a second function that you can apply the intermediate value theorem to,
to get the conclusion that we want!]



The function f; = f : [0,1] — R (i.e., with smaller domain) is continuous, as is fo =
f :[1,2] - R. Also, the function g(xz) = z+ 1, g : [0,1] — [1,2] is continuous (it
is a polynomial!). So the function h : [0,1] — R given by h(z) = f(x) — f(x + 1) =
fi(z) — f2(g(x)) is continuous (as the difference of two continuous functions, one of them
continuous as the composition of two continuous functions).

But then h(0) = f(0) — f(1) = a and h(1) = (1) — f(2) = f(1) — f(0) = =[£(0) = fF(1)] =
—a. So one of three things is true: a > 0 and so —a = f(1) <0< f(0) =, or @ >< 0
and so = f(0) <0< f(1) = —a, ora=0and so a = f(0) <0< f(1) = —a. In every
case, 0 lies between h(0) and h(1), and so by the Intermediate Value Theorem, there is a
c € [0,1] so that h(c) = f(¢) — f(c+ 1) =0, i.e., f(¢) = f(c+1). This establishes our
result.

. Show that if A, B,C C R and the functions f: A — B and g : B — C are both uniformly
continuous, then the composition go f : A — C [defined by (g o f)(z) = g(f(x))] is also
uniformly continuous.

Since f is uniformly continuous, for every n > 0 there is a § > 0 so that, if z,y € A and
|z —y| <4, then [f(z) — f(y)] <n.

Since ¢ is uniformly continuous, for every € > 0 there is an n > 0 so that, if z,w € B and
|z —w| < n, then |g(z) — g(w)| < e.

But now suppose that € > 0 is given; then pick n > 0 as in the second statement, and then
pick a § > 0 as in the first statement. Then if z,y € A and |xr — y| < §, then we have
|f(z) = f(y)| <n. But then f(z), f(y) € B, and so we have g(f(z)) — g(f(y))| <e.

So we have that for every e > 0 there is a § > 0 so that if x,y € A and |z — y| < J, then
[(go f)(@)— (g0 f)w)|=lg(f(x)) —g(f(y))| <¢ and so g o f is uniformly continuous.

. Let (an)S%y, (b,)22; be bounded sequences, and suppose that, for some subsequence

(bn )51, ar < by, for all k. Show that lim a, < lim b, provided both limits exist!

n—oo n—oo
(Hint: You can take the high road, and just quote theorems, but there is also another
way. )
Let a, — L and b, — M as n — oo. Then since a subsequece of a convergent sequence
converges to the same limit, we know that b,, — M as k — oo. But since ar — L
as k — oo (we are just changing names) and ay < b, , this implies that L < M, since
by, — ar > 0 implies that b, —ar — M — L > 0.

That, I think, was the high road; I'm no longer sure what I thought the “other way” was....

. Suppose that f : [0,1] — [0,00) is a continuous function, with the property that, for all
x € [0,1], there is a y € [0, 1] such that f(y) < (1/2)f(z). Show that there is a ¢ € [0, 1]
such that f(c) = 0.

(Hint: use the hypothesis to find a sequence z,, in [0, 1] such that f(z,) — 0.)
If we choose any x; € [0, 1] and set f(xz1) = r, then our hypothesis tells us that we can

find an zo € [0,1] with f(z2) < f(z1)/2 = r/2. Continuing, we can then find z3 € [0, 1]
with f(z3) < f(22)/2, so f(x3) < r/4 =r/22. This suggests an induction argument:

Claim: for every n € N, there is an x,, € [0, 1] with f(z,) < r/2""!. Proof: x5 provides
the base case. If, by induction, we have x,,, then the problem assumption yields an x with
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f(x) < f(x,)/2 < (r/27"71)/2 = r/2", so x,41 = T gives our inductive step. So the claim
is true by induction.

Having found x,, € [0,1] with 0 < f(z,) < r/2""! then since r/2""1 — 0 as n — oo, the
Squeeze Play Theorem tells us that f(x,) — 0 as n — oo.

But now (z,)52; is a bounded sequence, so it has a convergent subsequence z,, — z €
[0, 1]. Since f is continuous, we know that f(z,,) — f(z) as k — co. But since (f(zn, ))22
is a subsequence of (f(z,))2% ;, we also know that f(x,,) — 0 as k — oco. So f(z) =0
(otherwise we can use € = |f(z) — 0] > 0 to show that one of our limit results is false...).
So: we have found a z € [0, 1] with f(z) = 0, as desired.

. Show that there is no continuous function F': R — R satisfying f([0,1]) = [0, c0) .

Suppose there were such a function. Then the Extreme Value Theorem would tell us that
there is a ¢ € [0, 1] so that 0 < f(x) < f(c) for every x € [0,1]. But this then means that
there is no x so that f(xz) = f(c) + 1. So f cannot take on every non-negative value, so it
cannot have image [0, 00).

Alternatively, we could argue more fundamentally: if there were such an F', then for every
n € N thre is an z,, € [0,1] so that f(z,) > n. The sequence (z,)52,, since it is bounded,
as a convergent subsequence, z,,, converging to z € [0,1] (since 0 < z,, < 1 for every
k). But then continuity requires that f(z,,) = f(z) € R as k — oo, but f(z,, >nr >k

implies that f(z,,) — oo. This contradiction shows that F' cannot exist.

. Show that the function f:R—R defined by

flx) =a34+3x -7
has exactly one root between —1 and 2 (i.e., show it has at least one root, and doesn’t
have two!).

f :[-1,2] = R is continuous, since f is a polynomial. In addition, f(—1) = (=1)% +
3(—1)—T=-1-2-7T=-11<0,and f(2) =23+3.2-7=8+6—7=7>0. So 0 lies
between f(—1) and f(2), and so the intermediate value theorem tells us that f(z) = 0 for
at least one z € [—1,2].

To show that there cannot be two such values of x, we can show that z < y implies that
f(x) < f(y); that is, f is an increasing function. If we had derivatives, we could argue
that f'(z) = 322 + 3 > 3 > 0 implies that f is increasing, but we don’t! Instead, as argue
directly:

fy)—f(z) = (P +3y—T)—(z3+32-7) = (y°—2°) +3(y—2) = (y—2)(yZyz) +3(y—2) =
(y —2)((y+ §)* + 32° +3)

(by completing the square), and y — x is positive (by hypothesis) and (y+ %)2 + %xz +3)is
a sum of non-negative and positive numbers, so it positive. So their product, f(y) — f(x),
is positive, so f(y) > f(z).

So if f(x) = f(y) and = # y, then either z < y (so f(x) < f(y), a contradiction) or y < z
(so f(y) < f(z), a contradiction!). So x # y implies that f(x) # f(y), so f can take the
given value (like 0 (1)) at most once.



