
Fourier series, Parseval’s Identity, and

∞
∑

n=1

1

n2

Idea: Fourier series are a different way to express a function as a sum of ‘nicer’ functions.
The nice functions are trig functions (instead of powers).

The other idea: the Taylor series of f is built using information from near the center x = a of
the series (higher derivatives at a). For many functions this tells us nothing (i.e., we get no
good approximation) far from a. E.g., it can’t tell us anything past a point of discontinuity
of f . Fourier series use integration to capture information ‘averaged’ over an entire interval.
This allows it, for example, to approximate discontinuous functions!

Start with a periodic function f , with period (any number is OK, like) 2π, so f(x+2π) = f(x)
for every x. The idea: express f as an (infinite) sum of nice functions, also having period 2π.
A natural choice: the functions sin(nx) and cos(nx). So we attempt to write

f(x) =

∞
∑

n=0

an sin(nx) + bn cos(nx)

Two immediate questions: does such a series converge, and can we actually do this?! Usually,
yes! Just as with Taylor series, the right question to ask is: what values must an and bn have?
The answer is obtained by integration!

Since
∫

π

−π
sin(mx) cos(nx) dx = 0 for all m and n (the integrands are odd functions), and

∫

π

−π
sin(mx) sin(nx) dx = 0 and

∫

π

−π
cos(mx) cos(nx) dx = 0 for m 6= n, while

∫ π

−π
sin(nx) sin(nx) dx =

∫ π

−π
cos(nx) cos(nx) dx = π (these can be verified by integration by

parts/double angle formulas), this suggests that
∫

π

−π
f(x) sin(mx) dx =

∑

∞

n=0
an

∫

π

−π
sin(nx) sin(mx) dx + bn

∫

π

−π
cos(nx) sin(mx) dx = πam

and
∫ π

−π
f(x) cos(mx) dx =

∑

∞

n=0
an

∫ π

−π
sin(nx) cos(mx) dx + bn

∫ π

−π
cos(nx) cos(mx) dx = πbm

and so an =
1

π

∫

π

−π

f(x) sin(nx) dx and bn =
1

π

∫

π

−π

f(x) cos(nx) dx .

So if we can express a function as an infinite sum of trig functions, this is what the coefficients
must be equal to! For example, if we compute this for the “square wave”, the function f with
f(x) = −1 for x ∈ [−π, 0) and f(x) = 1 for x ∈ [0, π) (and which then repeats this pattern in
both directions), some computations give us that

bn = 0 (since f is an odd function) and an =
2(1− (−1)n)

nπ
.

So f(x) =
∞
∑

n=1

2(1− (−1)n)

nπ
sin(nx) =

∞
∑

k=0

4

(2k + 1)π
sin((2k + 1)x) .

It is somewhat beyond the scope of our course to verify this, but the theory behind all of this
is that the coefficients we have computed do succeed in minimizing the integral

∫

π

−π

[f(x)−

N
∑

n=0

(an sin(nx) + bn cos(nx))]
2 dx

for every N . [If you know the words (from linear algebra), these partial sums are orthog-
onal projections in the vector space of functions, where the ‘inner product’ is 〈f, g〉 =
∫

π

−π
f(x)g(x) dx . The functions sin(nx), cos(nx) are an orthogonal set of ‘vectors’ !] These

integrals decrease with N , and (usually!) converge to 0. This implies that over most of the

interval [−π, π] the ‘error’
∣

∣f(x)−

N
∑

n=0

[an sin(nx) + bn cos(nx)]
∣

∣ must be small.



Also somewhat beyond our scope, but the reason they came up in class, is Parseval’s Iden-
tity, which relates the squares of the Fourier coefficients to the integral of the (square of the)
function. The identity, for the form of the series that we have introduced, is

If f(x) =

∞
∑

n=0

an sin(nx) + bn cos(nx), then

∞
∑

n=0

(a2n + b2n) =
1

π

∫

π

−π

(f(x))2 dx .

To see why this should be so, we can write
∫

π

−π

(f(x))2 dx =

∫

π

−π

(

∞
∑

n=0

an sin(nx) + bn cos(nx))
2 dx

=

∫

π

−π

(

∞
∑

n=0

an sin(nx) + bn cos(nx))(

∞
∑

m=0

am sin(mx) + bm cos(mx)) dx

=

∫ π

−π

∞
∑

m=0

∞
∑

n=0

(anam sin(nx) sin(mx) + bnam cos(nx) sin(mx)

+anbm sin(nx) cos(mx) + bnbm cos(nx) cos(mx) dx

=

∞
∑

m=0

∞
∑

n=0

∫

π

−π

anam sin(nx) sin(mx) + bnam cos(nx) sin(mx)

+anbm sin(nx) cos(mx) + bnbm cos(nx) cos(mx) dx

=
∞
∑

m=0

∞
∑

n=0

∫

π

−π

anam sin(nx) sin(mx) dx+

∫

π

−π

bnam cos(nx) sin(mx) dx

+

∫ π

−π

anbm sin(nx) cos(mx) dx+

∫ π

−π

bnbm cos(nx) cos(mx) dx ,

where some of these steps requires some proof! (the product to two infinite sums is a doubly-
infinite sum, and the integral of an infinite sum is an infinite sum of integrals; both of these
can fail without some additional hypotheses!).

But if we can get past those conditions, then good things happen! Most of the integrals we
have here are equal to zero, except for when n = m, where

∫

π

−π

cos(nx) cos(nx) dx =

∫

π

−π

sin(nx) sin(nx) dx = π.

So:

∫ π

−π

(f(x))2 dx = π

∞
∑

n=0

(a2
n
+ b2

n
) , as desired.

If we apply this to the square wave function above, where bn = 0,

and an = 0 when n is even and an =
4

nπ
when n is odd, this yields

2π =

∫

π

−π

(±1)2 dx = π

∞
∑

k=0

(
4

(2k + 1)π
)2 =

16

π

∞
∑

k=0

1

(2k + 1)2
, so

∞
∑

k=0

1

(2k + 1)2
=

π2

8
.

To recover the series that we were really after, we can either apply this same approach, using
the function f(x) = x on [−π, π], or use a clever little trick:

S =

∞
∑

n=1

1

n2
=

∞
∑

n=1

1

(2n)2
+

∞
∑

n=1

1

(2n− 1)2
=

∞
∑

n=1

1

4n2
+

∞
∑

k=0

1

(2k + 1)2
=

1

4

∞
∑

n=1

1

n2
+

∞
∑

k=0

1

(2k + 1)2
,

so S =
S

4
+

π2

8
, so

3

4
S =

π2

8
and S =

4π2

24
=

π2

6
.

So

∞
∑

n=1

1

n2
=

π2

6
.


