Math 325 Problem Set 1

Problems are due Friday, January 20.

- 1. [Zorn, p.13 #2] Let $S = \{x \in \mathbb{R} \mid x^2 + x = 0\}$ and $T = \{x \in \mathbb{R} \mid x^2 + x < 5\}$.
 - (a) Write S and T as (small) unions of points and/or intervals.
 - (b) Decide whether each of the following statements is true, and (briefly) explain: $S \subseteq \mathbb{N} ; S \subseteq T ; T \cap \mathbb{Q} \neq \emptyset ; -2.8 \in \mathbb{Q} \setminus T$.
 - (c) Describe the set $U = \{s \in \mathbb{R} \mid x^2 + x < 0\}$ as a union of intervals.
- 2. [Zorn, p.14, #10] Starting with a set S, we can construct a new set P(S), the <u>power set</u> of S, consisting of all subsets of S. For example, $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$
 - (a) Find $P(\{1, 2, 3\})$.
 - (b) Show that if $S \subseteq T$, then $P(S) \subseteq P(T)$.
 - (c) If we set $N_k = \{1, 2, ..., k\}$, explain why $P(N_{11})$ has twice as many elements as $P(N_{10})$.
- 3. [Zorn, p.26, #8] Let L be the (linear) function L(x) = ax + b, where a and b are (real) constants and $a \neq 0$.
 - (a) Explain why L is both one-to-one and onto.
 - (b) Find a formula for the inverse function $M = L^{-1}$, and show that $L \circ M(x) = M \circ L(x) = x$ for every $x \in \mathbb{R}$.
- 4. [Zorn, p.26, #10 (part)] Suppose the $f: A \to B$ and $g: B \to C$ are both functions.
 - (a) Show that if f and g are both one-to-one, then $g \circ f : A \to C$ is one-to-one.
 - (b) Show that if $g \circ f$ is onto, then g is onto.