Math 325 Problem Set 2

Problems are due Friday, January 27.

- 5. [Zorn, p.36, #3] For the statements (a)-(d) below, state both the converse and the contrapositive of the given statement, and indicate (no explanation needed) which of statement, converse, and contrapositive are <u>true</u>.
 - (a) If $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$, then $a + b \in \mathbb{Q}$.
 - (b) If $a \notin \mathbb{Q}$, then $\frac{1}{a} \notin \mathbb{Q}$.
 - (c) If $a \notin \mathbb{Q}$ and $b \notin \mathbb{Q}$, then $ab \notin \mathbb{Q}$.
 - (d) If $a_n \in \mathbb{R}$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.
- 6. Show, using the Rational Roots Theorem, that $\alpha = \sqrt{2 + \sqrt{3}}$ is not rational.

[Find a polynomial with integer coefficients that has α as a root!]

7. [Zorn, p.45, #6] By looking at the first few cases, find a (short) formula for the sum $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)};$

then prove, using induction, that your formula is correct.

8. Show, by induction, that if x > 0 then $(1 + x)^n \ge nx + 1$ for every $n \in \mathbb{N}$.