Math 325 Problem Set 7

Problems are due Friday, March 10.

- 24. Show that for every $a \in \mathbb{R}$ we have $\lim_{x \to a} x = a$. (Your argument should be quite short!) Then, using induction and our limit theorems, show that for every $n \in \mathbb{N}$ we have $\lim_{x \to a} x^n = a^n$.
- 25. (a) Show that the (not very well-known? but it follows from angle sum formulas) trig identity

$$\sin(A) - \sin(B) = 2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right)$$
 for every $A, B \in \mathbb{R}$,

and the fact (which we will show in class!) that $|\sin(C)| \leq |C|$ for every $C \in \mathbb{R}$, together imply that for every $x, y \in \mathbb{R}$ we have $|\sin(x) - \sin(y)| \leq |x - y|$.

- (b) Using (a), show that the function $f(x) = \sin x$ is continuous at a for every $a \in \mathbb{R}$.
- 26. Show that if $f:(a,b) \to \mathbb{R}$ is a continuous function, then the function $g:(a,b) \to \mathbb{R}$ given by g(x) = |f(x)| is also continuous. (You should argue directly from ϵ 's and δ 's.)
- 27. Using the previous problem (and a problem from a previous problem set!), show that if $f, g: (a, b) \to \mathbb{R}$ are continuous functions, then the function $M: (a, b) \to \mathbb{R}$ given by $M(x) = \max\{f(x), g(x)\}$ is also continuous.