Math 106 Calculus 1 Topics for first exam

"Precalculus" $=$ what comes before limits. Lines and their slopes:

slope= rise over run = $(change in y-value)/(corresponding change in x value)$ slope-intercept: $y = mx + b$ point-slope: $\frac{y - y_0}{y - y_0}$ $x - x_0$ $=$ m two-point: $\frac{y - y_0}{y}$ $x - x_0$ $=\frac{y_1 - y_0}{ }$ $x_1 - x_0$ same slope: lines are parallel (do not meet) lines are perpendicular: slopes are negative reciprocals Functions: function = rule which assigns to each input exactly one output inputs = domain; outputs = range/image; $f : A \rightarrow B$ $y=f(x)$: 'y equals f of x': y equals the value assigned to x by the function f 'implied' domain of f: all numbers for which f(x) makes sense Graphs of functions: $y=f(x)$ is an equation; graph the equation! $graph = all pairs (x, f(x))$ where x is in the domain of f function takes only one value at a point; vertical line test symmetry (for functions) y-axis: even function, $f(-x) = f(x)$ origin: *odd* function, $f(-x) = -f(x)$ increasing on an interval: if $x > y$, then $f(x) > f(y)$ decreasing on an interval: if $x > y$, then $f(x) < f(y)$ **Stretching, shifting, and combinations:** start with graph of $y=f(x)$ shift to right by c; $y=f(x-c)$ shift to left by c; $y=f(x+c)$ shift down by c; $y=f(x)-c$ shift up by c; $y=f(x)+c$ $y=af(x)$; stretch graph verticcally by factor of a $y=f(ax)$; compress graph horizontally by factor of a combining functions: combine the outputs of two functions f,g f+g, f-g, fg, f/g composition: output of one function is input of the next f followed by $g = g \circ f$; $g \circ f(x) = g(f(x)) = g$ of f of x Inverse functions: Idea: find a function that undoes f find a function g so that $g(f(x)) = x$ for every x magic: f undoes g ! Usual notation: $g = f^{-1}$ Problem: not every function has an inverse. need g to be a function; f cannot take the same value twice. horizontal line test! Graph of inverse: if (a,b) on graph of f, then (b,a) is on graph of f^{-1} graph of f^{-1} is graph of f, reflected across line y=x Exponential functions. exponential expressions a^b Rules: $a^{b+c} = a^b a^c$; $a^{bc} = (a^b)^c$; $(ab)^c = a^c b^c$

Function $f(x) = a^x$; approximate $f(x)$ by $f(x)$ rational number close to x)

Domain: **R**; range: $(0, \infty)$; horiz. asymp. $y = 0$

Graphs: $a > 1$: near 0 at left, blows up to right. $0 < a < 1$: reflect in y-axis! Most natural base: $e = 2.718281829459045...$ Exponential growth: compound interest

P=initial amount, r=interest rate, compounded n times/year

 $A(t) = P \cdot (1 + r/n)^{nt}$ $n \to \infty$, continuous compounding : $A(t) = Pe^{rt}$ Radioactive decay: half-life = k $(A(k) = A(0)/2)$ $A(t) = A(0)(1/2)^{t/k}$

Logarithmic functions.

 $\log_a x =$ the number you raise a to to get x log_a x is the <u>inverse</u> of a^x $a = \text{base of the logarithm}$ natural logarithm: $\log_e x = \ln x$ $\log_a(a^x) = x$, all x ; $a^{\log_a x} = x$, all $x > 0$ Domain: all $x > 0$; range: all x Graph = reflection of graph of a^x across line $y = x$ vertical asymptote: $x = 0$

Properties of logarithms:

logarithms undo exponentials; properties are 'reverse' of exponentials

 $\log_a(bc) = \log_a b + \log_a c$; $\log_a(b^c) = c \log_a b$

$$
(\log_b c)(\log_a b) = \log_a(b^{\log_b c}) = \log_a c; \text{ so } \log_b c = \frac{\log_a c}{\log_a b} \qquad \log_b c = \frac{\ln c}{\ln b}
$$

Trigonometry.

Degrees and radians: measuring size of an angle

one full circle $=$ 360 degrees

one full circle $= 2\pi$ radians

radian measure $=$ length of arc in circle of radius 1 swept out by the angle

Trigonometric functions:

Ray making an angle (t) meets circle of radius 1 in a point (x, y)

$$
x = \cos t = \text{cosine of } t \qquad y = \sin t = \text{sine of } t
$$

\n
$$
\frac{1}{x} = \frac{1}{\cos t} = \text{sec } t = \text{secant of } t \qquad \frac{1}{y} = \frac{1}{\sin t} = \text{csc } t = \text{cosecant of } t
$$

\n
$$
\frac{y}{y} = \frac{\sin t}{\cos t} = \tan t = \text{tangent of } t \qquad \frac{x}{y} = \frac{\cos t}{\sin t} = \cot t = \text{cotangent of } t
$$

Examples:

$$
\sin(\pi/4) = \cos(\pi/4) = \sqrt{2}/2 \qquad \sin(\pi/6) = 1/2 \; ; \; \cos(\pi/6) = \sqrt{3}/2
$$

\n
$$
\sin(\pi/3) = \sqrt{3}/2 \; ; \; \cos(\pi/3) = 1/2 \qquad \sin(\pi/2) = 1 \; ; \; \cos(\pi/2) = 0
$$

\n
$$
\sin(0) = 0 \; ; \; \cos(0) = 1
$$

Domain of $\sin t$, $\cos t$: all t Range: [-1, 1]

point on circle corresp. to $t + 2\pi$ is <u>same</u> as point for t

 $\sin(t + 2\pi) = \sin t$; $\cos(t + 2\pi) = \cos t$ sin t and cost are periodic symmetry:

 $\cos t$, sec t are <u>even</u> functions sin t, csc t, tan t, cot t are <u>odd</u> functions $x^2 + y^2 = 1$ (unit circle): $\sin^2 t + \cos^2 t = 1$

Right angle trigonometry:

Right triangle: a =opposite side, b =adjacent side, c =hypotenuse $\sin(\theta) = a/c = (\text{opposite})/(\text{hypotenuse})$ $\cos(\theta) = b/c = (\text{adjacent})/(\text{hypotenuse})$ $tan(\theta) = a/b = (opposite)/(adjacent)$ "SOHCAHTOA"

Graphs of sine, cosine:

 $\sin(\theta) = y$ -value of the points (counter-clockwise) on the unit circle, starting with 0 $\cos(\theta) = x$ -value of the points (counter-clockwise) on the unit circle, starting with 1

Graph: note x-intercepts, y-intercept, maximum and minimum; draw a smooth curve Transformations: $y = a \sin(bx)$

vertical stretch by factor of a; **amplitude** is $|a|$

amplitude = how far trig function wanders from its 'center'

horizontal compression by factor of b; **period** is $2\pi/|b|$

Translations: just like before:

 $y = \cos(x - a)$; translation to right by $a \quad y = \cos(x) + a$; translation up by a

Inverse trig functions:

Inverses of trig functions? No! Not one-to-one. Solution: make them one-to-one!

 $f(x) = \sin x$, $-\pi/2 \le x \le \pi/2$, is one-to-one

inverse is called arcsin $x = \text{angle}$ (between $-\pi/2$ and $\pi/2$) whose sine is x $sin(arcsin x) = x$; $arcsin(sin x) = x$ if x is between $-\pi/2$ and $\pi/2$

 $f(x) = \cos x$, $0 \le x \le \pi$, is one-to-one

inverse is called arccos $x = \text{angle}$ (between 0 and π) whose cosine is x

 $\cos(\arccos x) = x$; $\arccos(\cos x) = x$ if x is between 0 and π

 $f(x) = \tan x$, $-\pi/2 < x < \pi/2$, is one-to-one

inverse is called arctan $x = \text{angle}$ (between $-\pi/2$ and $\pi/2$) whose tangent is x $tan(arctan x) = x$; $arctan(tan x) = x$ if x is between $-\pi/2$ and $\pi/2$

Graphs: take appropriate piece fo trig function, and flip it across the line $y = x$ cos(arcsin x) = (cosine of angle whose sine is x) = $\sqrt{1-x^2}$; etc.

Limits and Continuity.

Rates of change and limits:

Limit of a function f at a point $a =$ the value the function 'should' take at the point $=$ the value that the points 'near' a tell you f should have at a $\lim_{x \to a} f(x) = L$ means $f(x)$ is close to L when x is close to (but not equal to) a

Idea: slopes of tangent lines

The closer x is to a, the better the slope of the secant line will approximate the slope of the tangent line.

The slope of the tangent line = limit of slopes of the secant lines $($ through $(a,f(a))$)

 $\lim_{x \to a} f(x) = L$ does <u>not</u> care what $f(a)$ <u>is</u>; it ignores it $\lim_{x \to a} f(x)$ need not exist! (function can't make up it's mind?)

Rules for finding limits:

If two functions $f(x)$ and $g(x)$ agree (are equal) for every x near a (but maybe not <u>at</u> *a*), then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ Ex.: $\lim_{x\to 2}$ $x^2 - 3x + 2$ $\frac{3x+2}{x^2-4} = \lim_{x\to 2}$ $(x-1)(x-2)$ $\frac{(x-1)(x-2)}{(x+2)(x-2)} = \lim_{x\to 2}$ $\frac{x-1}{x-1}$ $x + 2$ $= 1/over4$ If $f(x) \to L$ and $g(x) \to M$ as $x \to a$ (and c is a constant), then $f(x)+g(x) \rightarrow L+M$; $f(x)-g(x) \rightarrow L-M$; c $f(x) \rightarrow cL$; $f(x)g(x) \to LM$; and $f(x)/g(x) \to L/M$ provided $M \neq 0$ If $f(x)$ is a polynomial, then $\lim_{x \to x_0} f(x) = f(x_0)$ Basic principle: to solve $\lim_{x \to x_0}$, plug in $x = x_0$! If (and when) you get $0/0$, try something else! (Factor $(x-a)$ out of top and bottom...) If a function has something like $\sqrt{x} - \sqrt{a}$ in it, try multiplying (top and bottom) with $\sqrt{x} + \sqrt{a}$ (idea: $u = \sqrt{x}$, $v = \sqrt{a}$, then $x - a = u^2 - v^2 = (u - v)(u + v)$.) Sandwich Theorem: If $f(x) \le g(x) \le h(x)$, for all x near a (but not at a), and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.

One-sided limits:

Motivation: the Heaviside function

The Heaviside function has no limit at 0; it can't make up its mind whether to be 0 or 1. But if we just look to either side of 0, everything is fine; on the left, H(0) `wants' to be 0, while on the right, H(0) `wants' to be 1.

It's because these numbers are different that the limit as we approach 0 does not exist; but the `one-sided' limits DO exist.

Limit from the right: $\lim_{x \to a^+} f(x) = L$ means $f(x)$ is close to L when x is close to, and bigger than, a Limit from the left: $\lim_{x \to a^{-}} f(x) = M$ means $f(x)$ is close to M when x is close to, and smaller than, a

 $\lim_{x \to a} f(x) = L$ then means $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$

(i.e., both one-sided limits exist, and are equal)

Limits at infinity / infinite limits:

∞ represents something bigger than any number we can think of.

 $\lim_{x \to \infty} f(x) = L$ means $f(x)$ is close of L when x is really large.

 $\lim_{x \to -\infty} f(x) = M$ means $f(x)$ is close of M when x is really large and negative.

Basic fact: $\lim_{x\to\infty}$ 1 $\frac{1}{x} = \lim_{x \to -\infty}$ 1 \boldsymbol{x} $= 0$

More complicated functions: divide by the highest power of x in the denomenator. $f(x), g(x)$ polynomials, degree of $f = n$, degree of $g = m$

$$
\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 0 \text{ if } n < m
$$

$$
\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = (\text{coeff of highest p})
$$

 $\lim_{x\to\pm\infty}$ $g(x)$ power in f)/(coeff of highest power in g) if $n = m$ $f(x)$

$$
\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \pm \infty \text{ if } n > m
$$

 $\lim_{x \to a} f(x) = \infty$ means $f(x)$ gets really large as x gets close to a

Also have $\lim_{x \to a} f(x) = -\infty$; $\lim_{x \to a^+} f(x) = \infty$; $\lim_{x \to a^-} f(x) = \infty$; etc....

Typically, an infinite limit occurs where the denominator of $f(x)$ is zero (although not always)

Asymptotes:

The line $y = a$ is a horizontal asymptote for a function f if $\lim_{x \to \infty} f(x)$ or $\lim_{x \to -\infty} f(x)$ is equal to a. I.e., the graph of f gets really close to $y = a$ as $x \to \infty$ or $a \to -\infty$

The line $x = b$ is a vertical asymptote for f if $f \to \pm \infty$ as $x \to b$ from the right or left. If numerator and denomenator of a rational function have no common roots, then vertical $asymptotes = roots of $denom$.$

Continuity:

A function f is <u>continuous</u> (cts) <u>at a</u> if $\lim_{x \to a} f(x) = f(a)$

- This means: (1) $\lim_{x\to a} f(x)$ exists ; (2) $f(a)$ exists ; and
- (3) they're equal.

Limit theorems say (sum, difference, product, quotient) of cts functions are cts. Polynomials are continuous at every point;

rational functions are continuous except where denom=0. Points where a function is not continuous are called discontinuities. Four flavors:

removable: both one-sided limits are the same jump: one-sided limts exist, not the same

infinite: one or both one-sided limits is ∞ or $-\infty$ oscillating: one or both one-sided limits DNE

Intermediate Value Theorem:

If $f(x)$ is cts at every point in an interval [a, b], and M is between $f(a)$ and $f(b)$, then there is (at least one) c between a and b so that $f(c) = M$.

Application: finding roots of polynomials!

Tangent lines:

Slope of tangent line = limit of slopes of secant lines; at $(a, f(a)$:

 $f(x) - f(a)$ $x - a$

Notation: call this limit $f'(a) =$ derivative of f at a

Different formulation: $h = x - a, x = a + h$ $f'(a) = \lim_{h \to 0}$ $f(a+h) - f(a)$ h $=$ limit of *difference quotient*

If $y = f(x)$ = position at 'time' x, then difference quotient = average velocity; $\text{limit} = \text{instantaneous velocity}.$

Derivatives.

The derivative of a function:

derivative = limit of difference quotient (two flavors: $h \to 0$, $x \to a$)

If $f'(a)$ exists, we say f is differentiable at a

Fact: f differentiable (diff'ble) at a , then f cts at a

Using $h \to 0$ notation: replace a with x (= variable), get $f'(x) = \underline{\text{new}}$ function

Or:
$$
f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}
$$

 $f'(x)$ = the derivative of f = function whose values are the slopes of the tangent lines to the graph of $y=f(x)$. Domain = every point where the limit exists Notation:

$$
f'(x) = \frac{dy}{dx} = \frac{d}{dx}(f(x)) = \frac{df}{dx} = y' = D_x f = Df = (f(x))'
$$

Differentiation rules:

$$
\frac{d}{dx}(\text{constant}) = 0 \qquad \frac{d}{dx}(x) = 1
$$
\n
$$
(f(x)+g(x))' = (f(x))' + (g(x))'
$$
\n
$$
(f(x)-g(x))' = (f(x))'
$$
\n
$$
(cf(x))' = c(f(x))'
$$
\n
$$
(f(x)g(x))' = (f(x))'g(x) + f(x)(g(x))'
$$
\n
$$
(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}
$$
\n
$$
(x^n)' = nx^{n-1}, \qquad \text{for } n = \text{natural number integer- rational number}
$$
\n
$$
(a^x)' = K \cdot a^x, \text{ where } K = \frac{d}{dx}(a^x)|_{x=0} = \ln a, \qquad \text{so } (a^x)' = a^x \ln a
$$
\n
$$
[[(1/g(x))' = -g'(x)/(g(x))^2]]
$$

Higher derivatives:

 $f'(x)$ is 'just' a <u>function</u>, so we can take its derivative!

$$
(f'(x))' = f''(x) \quad (= y' = \frac{d^2y}{dx^2} = \frac{d^2f}{dx^2}) = \text{second derivative of } f
$$

Keep going! $f'''(x) = 3$ rd derivative, $f^{(n)}(x) = n$ th derivative

Rates of change:

Physical interpretation: $f(t)$ = position at time t $f'(t)$ rate of change of position = velocity $f''(t)$ rate of change of velocity = acceleration $|f'(t)| =$ speed Basic principle: for object to change direction (velocity changes sign), $f'(t) = 0$ somewhere (IVT!)

Examples:

Free-fall: object falling near earth; $s(t) = s_0 + v_0 t$ – g 2 t^2

 $s_0 = s(0)$ = initial position; v_0 = initial velocity; g = acceleration due to gravity

Economics:

 $C(x) = \text{cost of making } x \text{ objects}; R(x) = \text{revenue from selling } x \text{ objects};$ $P = R - C =$ profit $C'(x)$ = marginal cost = cost of making 'one more' object $R'(x)$ = marginal revenue; profit is maximized when $P'(x) = 0$; i.e., $R'(x) = C'(x)$

Derivatives of trigonometric functions:

Basic limit: $\lim_{x\to 0}$ $\sin x$ \boldsymbol{x} $= 1$; everything else comes from this! $\lim_{h \to 0}$ $\bar{h}\rightarrow 0$ $1 - \cos h$ h $= 0$ Note: this uses radian measure!

Then we get:

$$
(\sin x)' = \cos x
$$

\n
$$
(\cos x)' = -\sin x
$$

\n
$$
(\cos x)' = -\cos x
$$

\n
$$
(\tan x)' = \sec^2 x
$$

\n
$$
(\tan x)' = \sec^2 x
$$

\n
$$
(\csc x)' = -\csc x \cot x
$$

The Chain Rule:

Composition $(g \circ f)(x_0) = g(f(x_0))$; (note: we <u>don't</u> know what $g(x_0)$ is.) $(g \circ f)'$ ought to have something to do with $g'(x)$ and $f'(x)$

in particular, $(g \circ f)'(x_0)$ should depend on $f'(x_0)$ and $g'(f(x_0))$

Chain Rule:
$$
(g \circ f)'(x_0) = g'(f(x_0))f'(x_0) = (d(\text{outside}) \text{ eval'd at inside fen}) \cdot (d(\text{inside}))
$$

Ex: $((x^3 + x - 1)^4)' = (4(x^3 + 1 - 1)^3)(3x^2 + 1)$

Different notation:

 $y = g(f(x)) = g(u)$, where $u = f(x)$, then $\frac{dy}{dx}$ $\frac{dy}{dx} =$ dy du du dx