
Math 417 Group Theory Second Exam

Things we (will) have talked about since the first exam
(but don’t forget the things covered before the first exam!)

Normal subgroups. The integers mod n can be viewed either as having elements {0, 1, . . . , n−
1}, or the elements are equivalence classes of integers, where a ∼ b if n|b − a. In the latter
case, we add elements by adding representatives of equivalence classes (and then need to
show that the resulting ‘element’ is independent of the choices made). This notion can be
generalized:

For G a group and H ≤ G a subgroup, defining a multiplication on (left) cosets by (aH)(bH) =
(ab)H requires, to be well-defined, that a1H = a2H and b1H = b2H implies (a1b1)H =
(a2b2)H . That is, we need a−1

1 a2, b
−1

1 b2 ∈ H implies (a1b1)
−1(a2b2) = b−1

1 (a−1

1 a2)b1(b
−1

1 b2) is
in H . This then requires b−1

1 (a−1

1 a2)b1 = b−1

1 hb1 ∈ H for every b1 ∈ G and h ∈ H . So we
define:

H ≤ G is a normal subgroup of G if g−1Hg = {g−1hg : h ∈ H} = H for every g ∈ G.

Then the multiplication above makes the set of (left) cosets G/H = {gH : g ∈ G} a group.
H = eGH is the identity element, and (gH)−1 = g−1H . The order of G/H is the number of
cosets of H in G, i.e., the index [G : H ] of H in G. We use H ⊳ G to denote “H is normal
in G”. We call G/H the quotient of G by H .

Alternate view: g−1Hg = H means Hg = gH , i.e., the left and right cosets of H in G coincide.

Examples: An ⊳ Sn; a conjugate of an even permutation is even.
Z(G) ⊳ G, for any group G; h ∈ Z(G) implies g−1hg = h ∈ Z(G).
In a dihedral group Dn = symmetries of a regular n-gon, the set of rotations forms a normal
subgroup; a conjugate of a rotation is a rotation.

SL(n,Z) ⊳ GL(n,Z), SL(n,R) ⊳ GL(n,R), and SL(n,Zm) ⊳ GL(n,Zm) .

In an abelian group, every subgroup is normal.

Inverse images: If ϕ : G → H is a homomorphism, and K ≤ H , then ϕ−1(K) = {g ∈ G :
ϕ(g) ∈ H} is a subgroup of G, the inverse image of K under ϕ. If, in addition, K ⊳H , then
ϕ−1(K) ⊳ G.

In particular, {eH} ⊳ H , so ϕ−1({eH}) = ker(ϕ) = the kernel of ϕ is a normal subgroup of
G. If H ⊳ G, then ϕ : G → G/H given by g 7→ gH is a (surjective) homomorphism. Then
ϕ−1({eG/H}) = H . So every normal subgroup occcurs as the kernel of a homomorphism.

On the other hand, the image of a normal subgroup need not be normal! But it is, if the
homomorphism is surjective.

First Isomorphism Theorem. If ϕ : G → H is a surjective homomorphism, then, setting
K = ker(ϕ), we find that aK = bK implies ϕ(a) = ϕ(b), and so there is a well-defined
(‘induced’) function ϕ : G/K → H , which is a bijective homomorphism, i.e., an isomorphism.
In general, replacing H wwith ϕ(G) to make it surjective, we find that ϕ : G/ker(ϕ) → ϕ(G)
is an isomorphism. So the image of ϕ is isomorphic to a quotient of G.

An abelian-ness criterion: if G/Z(G) is cyclic, then G is abelian (and then G/Z(G) = 1 (!)).

The homomorphism G → Aut(G) given by g 7→ ϕg, where ϕg(x) = gxg−1 has image Inn(G)
= the inner automorphisms of G, and kernel Z(G), and so G/Z(G) ∼= Inn(G).

If H ≤ G, then G acts (by left multiplication) on the (left) cosets of H in G; if [G : H ] = n,
we can think of this as permutations of n elements, i.e., Sn, so this gives a homomorphism
G→ Sn. The kernel N is then normal in G, and g ∈ N ⇔ gaH = aH for all a, so gH = H
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i.e, g ∈ H , so N ≤ H . Moreover, G/N ∼= subgroup of Sn, so [G : N ] = |G/N | divides
|Sn| = n!. So every subgroup of index n contains a normal subgroup of index dividing n!.

In particular, if [G : H ] = 2, then H ⊳G. In general, N = ∩g∈Gg
−1Hg = the intersection of all

of the conjugates of H in G.

Direct products/direct sums. We can ‘glue’ groups together as, essentially Cartesian
products: If G,H are groups, then G×H , with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2)
is a group. When we use this multiplication, we denote the group by G ⊕ H = the direct
sum of the groups G and H .

Examples: vector spaces! We use coordinate-wise addition.

|G⊕H| = |G| · |H|; If G and H are abelian then G⊕H is abelian.
If A ≤ G and B ≤ H , then A⊕ B ≤ G⊕H . But not all subgroups arise this way!
Z(G⊕H) = Z(G)⊕ Z(H)

If ϕ : G → H1 and ψ : G → H2 are homomorphisms, then we can build a homomorphism
ϕ⊕ ψ : G→ H1 ⊕H2 by (ϕ⊕ ψ)(g) = (ϕ(g), ψ(g)). The kernel of this is ker(ϕ) ∩ ker(ψ).

So, e.g, the homomorphism Z21 → Z3 ⊕ Z7 given by (x mod 21 7→ (x mod 3, x mod 7) is
injective, hence bijective (by the pigeonhole principle), hence an isomorphism! [All that was
really required was that 3 and 7 are relatively prime; the generalization to more factors is,
essentially, the Chinese Remainder Theorem.]

The same map gives a homomorphism Z
∗

21 → Z
∗

3 ⊕ Z
∗

7, which is still a bijection, giving an
isomorphism!

In general, if you have a collection ϕi : G→ Hi of homomorphisms that can ‘separate elements’,
i.e. if x 6= y then there is an i so that ϕi(x) 6= ϕi(y), then ⊕iϕi : G → ⊕iHi is injective, so
G is isomorphic to a subgroup of ⊕iHi.

An application of this: if |G| = p2 for some prime p, then G is abelian. In fact, either G ∼= Zp2

or G ∼= Zp ⊕ Zp.

Group-based (public key) cryptography.

Sending secret messages: The basic idea is that we assume that your enemy (= ‘Eve’ =
‘evesdropper’) can see anything you transmit. So a message must be encoded by you (‘Alice’)
(think: as a sequence of 0’s and 1’s) in such a way that only the intended recipient (‘Bob’)
can decode it. Typically, this is done by converting the message in a standard way into 0’s
and 1’s, and then add (in ⊕iZ2 !) a fixed sequence that both Alice and Bob know to the
message. Adding the string ( = a ‘key’) the first time encrypts the message; adding it to the
encrypted message decrypts the message (since (x+ y) + y = x in Z2).

The difficult part: how do Alice and Bob go about agreeing on a key? Back in the day this was
done by physically sending a list of daily keys; modern cryptography does this by exchanging
in public information that allows Alice and Bob to construct a secret key.

Diffie-Hellman: The first (1970’s) public key key-exchange system used Z
∗

p for p a (large)
prime. The idea is that, as we have seen, Z∗

p is a cyclic group, and so has a generator some
P ∈ Z

∗

p. Alice and Bob agree on a p and P , and then each chooses a (secret) exponent nA, nB

and transmit to one another αA = P nA mod p (to Bob) and αB = P nB mod p (to Alice).
Both then have the information to compute P nAnB = [P nA]nB = αnB

A = [P nB ]nA = αnA

B (Bob
can compute the first version, Alice can compute the second). They then use this as the
basis (takes its representation mod 2 ?) for an encryption string.

The point to this is that Eve has ‘only’ seen p, P , αA, and αB. She knows that αA = P nA

mod p (and there is only one nA between 0 and p − 1 that works), but does not know nA.
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The point is that the function n 7→ P n mod p is (we think!) what is known as a one-way
function: it is very efficient to compute (using, in this case, successive squaring [compute
P 2i mod p] and the base 2 representation of nA), but it is very diffiicult to invert: knowing
P nA mod p, find nA (in this case, this is called the discrete logarithm problem). And (we
think!) there is no way to compute P nAnB mod p, from the public information, without first
recovering either nA or nB. This is considered secure enough (for p large enough!) that it
is routinely used to protect banking information, your cellphone conversations, and internet
commerce generally.

Ko-Lee-Cha-Han-Cheon: Recently (since 2000), key exchange systems have been devised that
rely on the non-abelian-ness of groups. The first of these begins with a group G containing
two subgroups A,B ≤ G so that for any a ∈ A and b ∈ B, we have ab = ba. Then starting
with an agreed upon g ∈ G, Alice picks an a ∈ A and sends Bob α = aga−1, and Bob picks a
b ∈ B and sends Alice β = bgb−1 then γ = (ab)g(ab)−1 = a(bgb−1)a−1 = aβa−1 is something
that Alice can compute; but γ = (ab)g(ab)−1 = (ba)g(ba)−1 = b(aga−1)b−1 = bαb−1 can also
be computed by Bob. This is their shared secret key.

Example: G = GL(n + m,Zp), A = the block diagonal matrices with an m × m identity
matrix in the lower-right corner, and B = the block diagonal matrices with an n×n identity
matrix in the upper-left corner. Matrices chosen one from each always commute!. If you
want to ’hide’ this block diagonal structure, pick a matrix x at random and use the conjugate
subgroups xAx−1 and xBx−1, instead; xax−1 and xbx−1 will still commute!

In this system, the enemy/evesdropper Eve knows G, g, α, and β. To build the key, (we think!)
Eve must, from g and α = aga−1, recover a ∈ A (this is not quite true; see below). This is
called the conjugacy search problem: knowing g ∈ G and that h = xgx−1 for some x, find x
! Unlike the discrete log, which has been (relatively) well-studied, not much is known about
how difficult we should expect conjugacy search to be. In some groups (abelian groups!) it
is utterly trivial; in others, like GL(n,Zk) it can be quite quick; B = XAX−1 means (*)
BX = XA for some known matrices A,B and an unknown matrix X . But (*) is really a
system of n2 linear equations in the entries of X , which we can solve using (‘just’) linear
algebra....

It turns out, you do not really need to solve conjugacy search to ‘break’ Ko-Lee. It is enough,
given g and x = aga−1, to find a1, a2 ∈ A so that x = a1ga2 (we don’t need a2 = a−1

1 ). [Some
people call this the decomposition search problem.] This is because if you know aga−1 = a1ga2
and bgb−1 = b1gb2 then you can compute (ab)g(ab)−1 = a1b1ga2b2, since elements of A and
B commute. Whether or not decomposition is ‘easier’ than conjugacy isn’t clear...

Anshel-Anshel-Goldfeld: A different cryptosystem which relies on non-ablelian-ness uses com-
mutators xyx−1y−1 instead. In this system, we start with a group G and (finite) subsets
A = {a1, . . . , an} and B = {b1, . . . , bm} of G. Alice chooses a secret word (i.e., product)
α = ai1 · · · aik of elements of A and sends to Bob the group elements α1 = αb1α

−1, . . . ,
αm = αbmα

−1. Bob chooses a secret word β = bj1 · · · bjℓ built fro B, and sends the elements
β1 = βa1β

−1, . . . , βn = βanβ
−1. Their shared secret is the commutator αβα−1β−1. Bob

can compute this as α(bj1 · · · bjℓα
−1β−1 = (αbj1α

−1) · · · (αbjℓα
−1)β−1 = αj1 · · ·αjℓβ

−1, using
information he has and Alice sent, since he knows how he built β. Alice can compute this
as αβ(a−1

ik
· · · a−1

i1
)β−1 = αβ−1

ik
· · ·β−1

i1
from information she has and Bob sent. (They both

need to know how to invert elements in G....)

This system allows for more groupsG to be used; we don’t need to know how to find commuting
subgroups. The security of the system rests on the simultaneous conjugacy search problem
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(SCSP): given a list (a1, xa1x
−1), . . . , (an, xanx

−1) of pairs of elements ofG and the knowledge
that one element conjugates the first entries to the second, find x ! Again, we think that
recovering the commutator αβα−1β−1 generally requires you to solve SCSP for one of the
two lists; and (we think!) there are groups in which SCSP is ‘hard’.

For both of these systems, much of the security rests on choosing the right group G. Such
groups are called platform groups, and the study of which groups are good or bad for this
purpose is the subject of ongoing research. Most such groups are finite (as an aid to com-
putation). Which makes the next subject of interest!

Sylow Theory. Work carried out in the 1870’s highlighted how knowledge of certain sub-
groups of a (finite) group G can help us understand questions like “what are all of the groups
of a given order n?”. This has come to be known as Sylow theory (after its discoverer). It
starts with

Proposition: If G is a finite abelian group and p is a prime which divides |G|, then there
is an element x ∈ G with order p. [The proof consists of picking an element y ∈ G; if p
divides |y| then a power of y will work; otherwise we build an inductive argument and use
the (inductive) hypothesis that G/〈y〉 has an element of order p to find an x ∈ G with x〈y〉
of order p and show that a power of this x has order p.]

A key ingredient to understanding finite groups is the class equation, which come from studying
conjugation in a group, as an action of G on itself. Specifically, the homomorphism G →
Aut(G) given by g 7→ ϕg, where ϕg(x) = gxg−1 [so ϕgh = ϕg ◦ ϕh] gives an action, and the
orbit of x ∈ G, orbG(x) = {gxg−1 : g ∈ G} is the conjugacy class cl(x) of x in G. The
stabilizer of x, stabG(x) = {g ∈ G : gxg−1 = x} = {g ∈ G : gx = xg} = CG(x) is the
centralizer of x in G. The orbit-stabilizer theorem then tells us that |G| = |cl(x)| · |stabG(x)|,
and so |cl(x)| = [G : CG(x)] (which then divides |G|). |cl(x)| = 1 precisely when x ∈ Z(G).
If we choose one representative for each conjugacy class of size > 1, then noting then G is
partitioned into disjoint conjugacy classes, we find that

|G| = |Z(G)| + Σ[G : CG(x)], where the sum is taken over the cl(x) of size > 1 (and so each
[G : CG(x)] > 1).

This is the class equation. It is a fundamental result for counting things in a group. For
example:

Proposition: If |G| = pk for some prime p, then |Z(G)| > 1; every group of prime-power order
has non-trivial center. [This is because in the class equation every [G : CG(x)] > 1 divides
pk and so is a multiple of p. Therefore |Z(G)| is a multiple of p.]

If H ≤ G, then G acts (by conjugation) on the conjugates H = {gHg−1 : g ∈ G} of H in
G, and the orbit-stabilizer theorem again tells us that, noting that stabG(H) = {g ∈ G :
gHg−1 = H} = NG(H) = the normalizer of H in G, we have |H| = [G : NG(H)| divides
[G : H ] (and hence divides |G|).

Sylow theory focuses on subgroups (and elements) of G whose orders are a power of a given
prime p. [Such (sub)groups are call p-groups.]

(First) Theorem: If G is a finite group, p is prime, and pk divides |G|, then G contains a
subgroup H with |H| = pk. [The proof is again an induction on |G|; either pk divides one of
the CG(x) (which are proper subgroups, when |cl(x)| > 1), letting us find H in CG(H), or
p divides |Z(G)|. Then we can find an x ∈ Z(G) of order p and use induction on G/〈x〉, to
find a subgroup H of order pk−1. Then ϕ−1(H), where ϕ : G→ G/〈x〉, has order pk.

Corollary: If p is prime and p divides |G|, then there is an element of G of order p.
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A p-Sylow subgroup of G is a subgroup H with |H| = pk and |G|/pk is relatively prime to p.
The first theorem tells us that, for every prime p, G has a p-Sylow subgroup. The remaining
theorems tell us about these subgroups.

(Second) Theorem: Every subgroup K of G of order pk is contained in a p-Sylow subgroup. [In
fact, given a p-Sylow subgroup H , K acts in the conjugates H of H , and an orbit-stabilizer
argument, using that |H| is relatively prime to p, shows that K fixes one of the elements Hi

of H, which in turn implies that K ≤ Hi.]

An immediate consequence of (the proof of) the second theorem is that the p-Sylow subgroups
of G are all conjugate (one is contained in, hence equal to, a conjugate of the other).

(Third) Theorem: The number |H| of p-Sylow subgroups of G is congruent to 1 mod p, and
divides [G : H ]. [This comes from a more careful count of the orbits of H under conjugation,
when |H| = pk and [G : H ] is relatively prime to p.]

Taken together, these results provide a powerful tool for understanding the structure of a
group, based (almost) solely on its order. For example:

A group of order 35 = 5 ·7 has (cyclic) Sylow subgroups of order 5 and 7, and |H5| = |H7| = 1,
i.e, both are normal (their normalizers are both G). Then G/H5 and G/H7 are both (cyclic)
groups, and the ‘natural’ homomorphism G → G/H5 ⊕ G/H7 is injective (the kernel is
H5 ∩ H7 = {eG}), and therefore, since both groups have order 35, is surjective. So G is
isomorphic to a direct sum of groups of order 7 and 5, i.e., to Z7 ⊕ Z5 (which is turn is
∼= Z35). So every group of order 35 is cyclic.

A group of order 225 = 32 · 52 has Sylow subgroups of order 9 and 25. |H3| divides 25 and is 1
mod 3, and so is either 1 (and so H3 is normal) or 25. |H5| divides 9 and is 1 mod 5, and so
is equal to 1 (and so H5 is normal). If H3 ⊳ G, then as above we can build an isomorphism
G→ G/H3⊕G/H5. But |G/H3| = 25 = 52, and |G/H5| = 9 = 32, and so both quotients are
abelian and so G is abelian, and is isomorphic to a direct sum of one of Z25 or Z5⊕Z5 with one
of Z9 or Z3⊕Z3. On the other hand, if |H3| = 25, then since H5 ⊳G we have that H3 acts in
H5 by conjugation, yielding a homomorphism H3 → Aut(H5). But textrmAut(H5) is either
Z
∗

25 (if H5 = Z25), which has order 20, or GL(2,Z5) (if H5 = Z5 ⊕ Z5), which has order 480.
But the only homomorphism H3 → Z

∗

25 is trivial, so in this case elements of H3 commute
with elements of H5, and so G is abelian. In the other case, there are homomorphisms
H3 → GL(2,Z5); by Sylow theory (!), there are elements of order 3 in GL(2,Z5) to map to.
In this case conjugation will be non-trivial, and so G will be non-abelian.

In this last case, we can say still more. Since H5 ⊳ G, the product set H5H3 = {hk : h ∈
H5, k ∈ H3} is a subgroup of G, and multiplication in this subgroup looks like (h1k1)(h2k2) =
(h1[k1h2k

−1

1 ])(k1k2), where k1h2k
−1

1 ∈ H5 since H5 is normal. Furthermore, H5H3 = G, since
the map H5×H3 → H5H3 is injective (h1k1 = h2k2 means h−1

2 h1 = k2k
−1

1 ∈ H5∩H3 = {eG}),
and hence maps onto G. So the group multiplication is ‘determined’ by how H3 conjugates
elements of H5, i.e., by the homomorphism H3 → Aut(H5).

This last situation occurs often enough that this construction is given a name. If G and H are
groups, and ϕ : H → Aut(G) is a homomorphism, then M = G × H , with multiplication
(g1, h1)(g2, h2) = (g1 · [ϕ(h1)](g2), h2h2) is a group, and G × {eH} is (check!) a normal
subgroup of M . Such a group is called a semidirect product of G and H , and is denoted
G⋊H . So what we were finding above is that in the last case(s), G is isomorphic to H5⋊H3.

A final example: if |G| = 3 · 17 · 23 = 1173, then |H3| is 1 or 17 · 23 = 391, |H17| is 1 or 69,
and |H23| is 1. But if |H3| = 391, then there are 391 distinct subgroups of order 3, and so
(since pairs intersect only in eG) G has 782 elements of order 3. And if |H17| = 69, then G
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has 69 · 16 = 1051 elements of order 17. But a group of order 1173 can’t do that (there are
then at least 782 + 1051 = 1833 elements...). So at least one of H3 and H17 (in addition to
H23) must be normal. In fact, applying arugments like the first example to G/H3 or G/H17

and G/H23 implies that two of these are abelian, which forces G to be abelian, so both H3

and H17 are normal!

These kind of techniques can, with work, typically enable us to identify all of the groups with
a given (small...) order.

The Fundamental Theorem of Finite Abelian Groups. Our work with Sylow theory
tells us that if G is abelian and |G| = pk11 · · · pknn is the prime factorization of |G|, then G has
(Sylow) subgroups Hi of orders p

ki
i . Since G is abelian, these subgroups are normal, and,

in fact, the map H1 ⊕ · · · ⊕ Hn → G sending (h1, . . . hn) 7→ h1 · · ·hn is a homomorphism
(since G is abelian) and injective, and so is an isomorphism. To completely classify the finite
ablelian groups, it is then enough to do so for groups of prime-power order. This we can do:

Theorem: If G is an abelian group and |G| = pk for some prime p, then G ∼= Zpk1 ⊕ · · ·⊕Zpkm

for some numbers k1 ≥ · · · ≥ kn and k1 + · · ·+ kn = k.

This is proved, as with most of our other results of this type, by induction on k. We pick the
element x with largest possible order pk1 , and then build the quotient group H = G/〈x〉 and
(by induction) an isomorphism Zpk2 ⊕ · · · ⊕ Zpkm → H . When can then ‘lift’ this map to a
map to G, and then build a homomorphism 〈x〉 ⊕ (Zpk2 ⊕ · · · ⊕ Zpkm ) → G, which we can
then show is an isomorphism! To build the ‘lift’ thhe fact that x has largest possible order
plays a key role....

Shuffling cards. We can use our understanding of group theory to analyse problems which
appear to have little to do with groups. For example, a deck of cards (with an even number
2n of cards) can be ‘perfectly’ shuffled in two ways by splitting the deck into two stacks of
n and interleaving them in one of two ways. These can be represented by two permutations
of 2n letters:

(

1 2 · · · 25 26 27 28 · · · 51 52
1 3 · · · 49 51 2 4 · · · 50 52

)

and
(

1 2 · · · 25 26 27 28 · · · 51 52
2 4 · · · 50 52 1 3 · · · 49 51

)

The first is an outshuffle, and the second is an inshuffle. A basic question to ask (these live in
the finite group S52 is: what is the order of these permutations? How many perfect shuffles
will return the deck to its original position? By thinking of these differently, we can find
the answer. For the outshuffle, dropping the first and last (fixed) numbers and shifting by
1, and then thinking modulo 51, the permutation T0 becomes T :

(

1 2 · · · 24 25 26 27 · · · 49 50
2 4 · · · 48 50 1 3 · · · 47 49

)

=

(

1 2 · · · 24 25 26 27 · · · 49 50
2 4 · · · 48 50 52 54 · · · 98 100

)

This is the ‘permutation’ “multiply by 2, and then reduce modulo 51”. That is, T (k) = 2k
mod 51 . So T n(k) = 2n · k mod 51, and so T n(k) = k for all k precisely when 2n ≡ 1 mod
51. SO the order of the outshuffle is the order of 2 in Z

∗

51 ! Which happens to be 8; so 8
outshuffles will return a deck to its original position. [Note that this also tells us the orbit
of every k under successive multiplication by T ; most have orbits of size 8 (when k is not
(one more than) a multiple of 17, while T0(18) = 35 and T0(35) = 18.

For the inshufffle, thinking modulo 53, it is
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(

1 2 · · · 25 26 27 28 · · · 51 52
2 4 · · · 50 52 54 56 · · · 102 104

)

and so it is multiplication by 2 modulo 53; N(k) = 2k mod 53. So the order of N is the order
of 2 in Z

∗

53, which is 52. In fact, Nm(k) = K for the first time when m = 52, for all k, so N
is a 52-cycle!

This kind of analysis works the same for deck of any (even) size 2n; the outshuffle is (ignoring
the outer two cards) multiplication by 2 modulo 2n − 1, and the inshuffle is multiplication
by 2 modulo 2n+ 1, and so the order of the permutations are thhe orders of 2 in Z

∗

2n−1 and
Z
∗

2n+1, respectively.

... and something we will probably run out of time before reaching....

Wallpaper groups. Our first encounter with groups was as the symmetries of some object.
Returning to that theme, we can introduce ‘structures’ on the plane in the form of tilings:
a tile is (essentially) a polygon or collection of polygons, and a tiling is a way to cover the
plane by copies of the tiles, overlapping only along their edges. Many familiar tilings can
be found all around us; squares, equilateral triangles, regular hexagons, and even any single
quadrilateral can tile the plane. We also saw how a pentagon (with two right angles, shaped
like a ‘house’) can tile the plane. A wallpaper group (or tiling group, or crystallographic
group) is the group of symmetries of a tiling, that is, the group of rigid motions of the plane
that carries each tile of a tiling to another tile of the same tiling. For the tilings described
above, these groups contain translations, reflections, glide reflections, and rotations.

A fundamental result, that was observed by crystallographers, is:

Theorem: If a wallpaper group G contains a non-trivial translation, then every rotation in G
has order either 2, 3, 4, or 6.

The proof uses the Law of Cosines!
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