

Math 417 Problem Set 5

Starred (*) problems are due Friday, September 28.

(*) 28. (Gallian, p.88, #24, sort of) Show that if G is a group with $a, b \in G$ and $ab = ba$, then $\langle b \rangle \leq C_G(a) =$ the centralizer of a in G .

29. Show that if G is a group, $A, b \in G$ and $ab \in Z(G)$ [the center of G], then $ab = ba$ (i.e., a and b commute).

(*) 30. (Gallian, p.86, #17) If $a \in G$ and $|a| < \infty$, then complete the following statement:
“ $|a^2| = |a^{12}|$ if and only if _____.”

Explain why your statement is true.

31. (Gallian, p.87, #14) Suppose that G is a cyclic group that has exactly three subgroups: G , $\{e\}$, and a subgroup of order 7. What is $|G|$? Is there anything special about the number 7?

32. (Gallian, p.112, #3) Write each of the following permutations as a product of disjoint cycles:

- $(1 \ 2 \ 3 \ 5)(4 \ 1 \ 3)$
- $(1 \ 3 \ 2 \ 5 \ 6)(2 \ 3)(4 \ 6 \ 5 \ 1 \ 2)$
- $(12)(1 \ 3)(2 \ 3)(1 \ 4 \ 2)$

33. (Gallian, p.114, #32) If $\beta = (1 \ 2 \ 3)(1 \ 4 \ 5)$, express β^{99} as a product of disjoint cycles.

(*) 34. Show that if $\alpha \in S_n$ has $|\alpha|$ odd, then α is an even permutation!

[Hint: Imagine that you have expressed α as a product of disjoint cycles...]