
Math 417 Group Theory Miderm Exam

Things we have talked about so far

Symmetries: Group theory had its origins in the study of symmetry = a bijective (= injective
and surjective) function f : X → X that preserves some chosen “structure”. E.g., if structure
= nothing, then f is ‘just’ a bijection (= permutation). IfX is a vector space, then ‘structure’
might be vector addition and scalar multiplication (i.e., f(~v + ~w) = f(~v) + f(~w)), f(c~v) =
cf(~v)), and f is a (bijective) linear transformation. If X is a polygon/polyhedron, and f is
a rigid motion (distance between point is preserved) which carries X to itself, then f is an
isometry of X . If we wish to preserve both the vector space structure on Rn and the lengths
of vectors, we get the collection of orthogonal n× n matrices (which or those which satisfy
ATA = I; the columns of A form an orthonormal basis).

An isometry which leaves the origin fixed is a linear transformation, and so is represented as
multiplication by a matrix; for the plane, this means we have either a rotation by angle θ,
Rθ or a reflection in an line with angle θ, Fθ, where

Rθ =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

and Fθ =

(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)

These are, in fact, the set of all symmetries of a circle centered at the origin. If we instead wish
to look at the symmetries of a polygon P , then since a rigid motion must take the center of
mass of (the region inside of) P to itself, they must all be rotations and reflections around
that point, and must, in addition, take the vertices of P to vertices of P . This reduces the
problem of finding all symmetries to a ‘finite problem’: which rotations/reflections preserve
the vertices? For a regular n-gon, there are 2n of them; n rotations (including the identity
map) and n reflections.

Symmetries are functions, and so can be composed; and the composition of two bijections that
preserve a structure (like those above) is also a bijection that preserves the structure. So
symmetries can be composed, and inverted, and the identity is a symmetry. This provides
the model for our main object of study: groups.

Groups: Ultimately, the notion of a group can be introduced anywhere that ‘objects/functions’
can be both composed and reversed. The key obervation is that function composition is as-
sociative.

A group is any collection G of elements, together with a way to (‘compose’ =) multiply them,
G×G→ G, (g, h) 7→ g ∗ h so that:
there is an ‘identity’: e ∈ G so that e ∗ g = g ∗ e = g for all g ∈ G
there are inverses: each g ∈ G has a g−1 ∈ G so that g ∗ g−1 = g−1 ∗ g = e
multiplication is associative: for all g, h, k ∈ G, we have (g ∗ h) ∗ k = g ∗ (h ∗ k)

A key property that is implicit in the definition of a group is closure: the product of two
elements of G must again be an element of G.

Examples:

For small enough examples, we can represent the group multiplication by a Cayley table; a
matrix which lists every multiplication. g ∗ h is listed in the g-th row and h-th column.

R = any ring (like Z, Q, R, C) is a group when we consider only the adddition; (Z,+, 0). +
is the group operation, and 0 is the identity.

For F any field, the set (F ∗, ·, 1), where F ∗ is the set of non-zero elements, is a group under
multiplication. Positive rationals, and positive reals, are also a group under multiplication.
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(Zn,+, 0), the integers modulo n, form a group under addition. (Z∗

n, ·, 1), the elements of
k ∈ Zn with k and n relatively prime, form a group under under multiplication. This is
because the Euclidean algorithm shows us that the product of two numbers a, b relatively
prime to n is again relatively prime to n. That is:

ak1 + nℓ1 = 1 and bk2 + nℓ2 = 1 implies that (ab)(k1k2) + n(ℓ1bk2 + ℓ2ak1 + nℓ1ℓ2) = 1
and because the gcd of two numbers m,n is both the largest integer that divides both m and
n (k|n and k|m and no number larger than k does) and the smallest positive integer that
can be expressed as nx+my for integers x, y.

Alternate structures! G = Z, with the multiplication a ∗ b = a+ b = 7, is a group; the identity
element is −7 (!).

Z13, with multiplication a ∗ b = 3ab (mod 13), is a group. The identity element is 9 (!).

Matrix groups: The set of invertible n × n matrices, with coefficients in any ring R, form
a group. The group operation is matrix multiplication, the identity element is the identity
matrix, and inverse are, well, inverses. via the usual augmented matrix approach to inversion,
or Cramer’s Rule, the invertible matrices are precisely those matrices A whose determinant
det(A) is a unit in R, i.e., has a multiplicative inverse. The invertible matrices over R are
usually denoted GL(n,R) or GLn(R), and is called the general linear group.

If we look at the cartesan product Zn ×Z∗

n of the integers modulo n with their group of units,
we can define a product on these by (a, b)(c, d) = (a+ bc, bd). The identity element is (0, 1),
(a, b)−1 = (−ab−1, b−1), and multiplication is associative!

The symmetries of a polygon, or other geometrical figure P (that is, the rigid motions α with
α(P ) = P , form a group under function composition, usually called theisometry group of P .

The set of affine functions f(x) = mx + b (with m 6= 0) form a group under function compo-
sition.

The set of continuous functions f : [0, 1] → [0, 1] that are bijective form a group under
composition; the Inverse Function Theorem implies that the inverse function f−1 is also
continuous.

Some basic results that hold for any group:

The identity element is unique: if xg = g = gx for every g, then x = eG.
Inverses are unique: if xg = gx = eG, then x = g−1.
Cancellation Law: if ac = bc then a = b, and of ca = cb then a = b.
Inverse of a product: (ab)−1 = b−1a−1 .

The order |G| of a grop G is the number of elements in the group.

Cancellation implies that the Cayley table of a group is a latin square: every group element
appears exactly once in each row and column. [This is, however, not enough to guarantee
associativity, evven when the multiplication is commutative...]

If the group multiplication is commutative - ab = ba for every a, b ∈ G - then we say that G
is abelian. ‘Most’ groups are not abelian: general linear groups (when n ≥ 2 are not, the
groups Zn × Z∗

n are (usually) not, and most isometry groups (e.g., for regular n-gons with
n ≥ 3) are not abelian.

If G is a group and g ∈ G, and n ∈ Z, then we adopt the familiar exponential notation
gn = g · · · · · g (n g’s) if n > 0

gn = g−1 · · · · · g−1 (|n| g’s) if n < 0
and we define g0 = 1G

Then we have gn+m = gn · gm and gnm = (gn)m for every n,m ∈ Z . (This implies that the
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suggestive notation g−1 behaves the way it is supposed to.)

If G is finite, then for any g ∈ G the powers gn will eventually repeat themselves. When they
first do, we have gn = eG. The order of g, |g| = min{n ∈ N : gn = eG}, satisfies: if g

k = eG,
then |g| divides k.

Subgroups: There were several instances in which we ‘borrowed’ the group multiplication
from one group so show that another set forms a group, e.g., SLn(R) = {A ∈ GLn(R) :
det(A) = 1} ⊆ GLn(R) under matrix multiplication. This is a very common situation: we
show something is a group by stealing the proof of the associativity of the group operation
from another group.

A subset H ⊆ G of a group G is a subgroup of G if, using the group operation from G, H is
also a group. This amounts to showing three things:
If a, b ∈ H , then ab ∈ H (closure)
eG ∈ H , and
if a ∈ H , then a−1 ∈ H (the inverse that lives in G actually lives in H)

The point is that, being a group, H must contain an inverse for a ∈ H , but since the group
operation comes from G, this inverse must by the inverse a−1 that lives in G !

Examples:
3Z = {3z : z ∈ Z} ⊆ Z is a subgroup.
The set of diagonal matrices in GLn(R), and the set of upper triangular matrices, are both
subgroups of GLn(R) .

A one-step subgroup test: If H ⊆ G and whenever a, b ∈ H then ab−1 ∈ H , then H is a
subgroup of G.

If H is finite, then H ⊆ G is a subgroup if whenever a, b ∈ H we have ab ∈ H . (This is because
an = eG for some n, allowing us to establish that both eG and inverses lie in H .)

More examples:
For g ∈ G, 〈g〉 = {gn : n ∈ Z} = the cyclic subgroup generated by g ∈ G. |〈g〉| = |g| .

Z(G) = C(G) = {g ∈ G : gh = hg for every h ∈ G} = the center of G, is a subgroup of G.
[Z(G) = {eG} means that G is centerless.]

ZG(a) = CG(a) = {g ∈ G : ga = ga} = the centralizer of a in G, is a subgroup of G.

If H,K ⊆ G are subgroups of G, then H ∩K is a subgrop of G. [Problem set!] This ia also
true for arbitrary intersections of subgroups.

Cyclic groups: G is cyclic if G = 〈g〉 for some g ∈ G.

If G is finite, then G = 〈g〉 ⇔ |G| = |g|. So, for example, Z∗

17 = 〈10〉, so Z∗

17 is cyclic. More
generally, if p is prime, then Z∗

p is a cyclic group (although finding a generator can be rather
challenging...)

Subgroups of cyclic groups: If G = 〈g〉 and H ≤ G is a subgroup, then H = 〈gk〉, where
k is the smallest (positive) exponent so that gk ∈ H . Moreover, if |g| = n is finite, then

k|n and |H| = n/k also divides n. In general, if |g| = n is finite, then 〈gk〉 = 〈ggcd(k,n)〉
(and gcd(k, n) gives the smallest power that lies in 〈gk〉). This allows us to list all of the
subgroups of a cyclic group 〈g〉 .

In particular, if G = 〈g〉 is finite (|g| = n), then 〈gk〉 = G ⇔ k and n are relatively prime.
This implies that Zn is cyclic with generator any integer relatively prime to n.

Permutations and permutation groups: for any set X , the set of bijections f : X → X
form a group, Perm(X), under composition. For finite sets, we typically choose the set
{1, 2, . . . , n} (since it is the number of elements, and not their names, that really matter),
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and call the group Sn = the symmetric group on n elements. We can express an element
by listing the images of 1 through n, in order, but we will ultimately find it (much) more
conveient to use an alternate notation: cycles.

Cycle notation: The idea is that a cycle, like “(1364)”, says ‘1 goes to 3, 3 goes to 6, 6 goes
to 4, and 4 goes to 1’, and every other number isn’t moved.

Any element of Sn can be written as a product of cycles; just start at 1, and repeatedly write
down where it goes (a, say), and then where a goes, repeating until we return to 1. Then
pick something not listed in the cycle just written, and repeat the process. Continue until
every number has been checked. No number will be written down twice, because that would
mean that our bijection wasn’t one-to-one. If a number k isn’t moved, then part of our
notation would include (k), but we omit it, and adopt the convention that any number not
listed in a cycle is not moved by the cycle. This results in an expression for the permutation
as a product of disjoint cycles (no two cycles share an element).

With this notation, function composition (the group operation) becomes concatenation, but a
little care must be exercised. For example, if

f = (123) and g = (12)(34) (all in S4)

then f ◦ g means g followed by f , i.e., 1 → 2 → 1 and 3 → 4 → 3 , followed by 1 → 2 → 3 → 1
,

which is 1 → 3 → 4 , i.e., (134). The point is that we would write this as

(123)[(12)(34)] = (123)(12)(34)

but we must be careful how we read this; each individual cycle is read left to write, to determine
where it sends each number, but the product of cycles must be read right to left, as function
composition is done. For example,

(12453)(1423)

sends 1 to (4 to) 5, *not 1 to (2 to ) 3. One way to think of it; each cycle has an arrow from
left to right, to show how it is read, but the whole product has an arrow from right to left,
to show how it is read.

Cylce notation has the advantage that a cycle like (123) can be thought of as sitting in S3 or
S6 or any symmetric group Sn with n ≥ 3, and the effects of multiplication will be the same
in each of them. Another important point is that disjoint cycles commute; if α and β are
two cycles that share no number in common, then αβ = βα.

Having an expression for α ∈ Sn as a product of disjoit cycles also allows us to quickly
determine the order |α|; a cycle has order equal to its length, and so because the cycle
commute, |α| is the least common multiple of the lengths of the disjoint cycles. And since
ths calculation pays no attention to the contents of the cycles, just their lengths, we can
determine the orders of every element of Sn by considering the ways to express n as a sum
of positive integers (and the 1’s that occur have no effect on the order).

Transpositions and parity: Every element of Sn can be expressed as a product of 2-cycles,
since every k-cycle (a1, . . . , ak) = (a1, a2)(a2, a3) · · · (ak−1, ak). Even more:

Every expression of a given α ∈ Sn as a product of transpositions either always has an even
number of 2-cycles (α is even) or always has an odd number of 2-cycles (α is odd).

This has many far-reaching consequences (essentially, anywhere where we wish to build an
‘invariant’ by counting/adding up large numbers of things, e.g., the determinant!). Of more
immediate use to us is:

If we define a function from sgn from Sn to {−1, 1} by sending even permutations to 1 and
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odd permuations to −1 (the ‘sign’ or ‘signum’ function), then sgn(αβ) = sgn(α)sgn(β).
In particular, the product of two even permutations is even, and so the set An of even
permutations on n letters is a subgroup of Sn (the alternating group on n letters). And
since α 7→ (1, 2)α send even to odd and odd to even, we have |An| = |Sn \ An| and so
|An| = (1/2)|Sn|.

Homomorphisms and Isomorphisms: The set {−1, 1} forms a group under multiplication,
and the signum map sgn : Sn → {−1, 1} send products to products; it is in some sense
‘compatible’ with the two group structures. This kind of ‘structure-preserving’ function (or
‘map’) between groups is a central topic of group theory.

A function ϕ : G→ H from a group G to a group H is a homomorphism if for every a, b ∈ G
we have ϕ(ab) = ϕ(a)ϕ(b). [Here the multiplication on the left takes place in G, while on
the right it takes place in H .]

Such a map automatically has ϕ(eG) = eH , and ϕ(a
−1) = [ϕ(a)]−1.

A homomorphism ϕ : G → H that is a bijection is called an isomorphism. [We then say
that G and H are isomorphic, and write G ∼= H .] The inverse ϕ−1 of an isomorphism in a
homomorphism, and therefore is also an isomorphism. An isomorphism ϕ : G→ G is called
an automorphism. A homomorphism ϕ : G→ G is called an endomorphism.

Examples:
ϕ : Z16 → Z∗

17, given by ϕ(k) = 10k (mod 17), is an isomorphism.
det : GLn(R) → R is a homomorphism; det(AB) = det(A)det(B) .

Conjugation: If g ∈ G, then ϕg : G → G given by ϕg(x) = gxg−1 is an autmorphism. Its
inverse is ϕg−1 . Such automorphisms are called inner automorphisms.

If ϕ : G→ H is a homomorphism, then |ϕ(g)| divides |g| .
If ϕ : G→ H is an isomorphism, ,then |ϕ(g)| = |g| .

If ϕ : G→ H is a homomorphism, then the image of ϕ, ϕ(G) = {ϕ(g) : g ∈ G} is a subgroup
of H .

The composition of two homomorphisms is a homomorphism; the composition of two isomor-
phisms is an isomorphism. This means that Aut(G) = {ϕ : G→ G : ϕ is an automorphism}
is a group, the automorphism group of G, Aut(G).

Example: Every homomorphism ϕ : Zn → Zm is ϕ(x) = kx for some k [k = ϕ(1)], and so
Aut(Zn) ∼= Z∗

n.
If ϕ : Zn → Zm, ϕ(x) = kx, is a homomorphism, then in order to be well-defined m/gcd(k,m)
= the order of k in Zm must divide n = the order of 1 in Zn.

If g ∼= H , then:
|G| = |H|
If G is cyclic, then H is cyclic.
If G is abelian, then H is abelian.

Essentially, any property that can be described in terms of the group multiplication, which
holds for G, must hold for H . (‘Every element of G has order 2, 3, or 5’, ‘any element g which
commutes with the square of another element h2, must commute with h’, ‘every proper (i.e.,
not equal to G) subgroup of G is cyclic’, etc.)

Cayley’s Theorem: Every group G is isomorphism to a subgroup of a permuation group.
Specifically, if X = G (thought of as a set), then there is an injective homomorphism
ϕ : G →֒ Perm(X).

This homomorphism is given by ϕ(g)(h) = gh (the ‘left regular representation of G’).
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Homomorphism building: Orders of group elements can help us understand the existence/structure
of homomorphisms.

A homomorphism ϕ : S3 → Z3 must send 2-cycles to (elements with order dividing 2, hence)
the identity; but since every permutation is a product of 2-cycles (the 2-cycles ‘generate’
S3), everything is sent to e.

A homomorphism ϕ : S5 → S4 must send 5-cycles to e. But then products of 5-cycles, like
(1, 2, 3, 4, 5)(1, 2, 3, 5, 4) = (1, 3)(2, 4) goes to the identity, so ϕ(1, 2) = ϕ(3, 4). This leads to:
the image of ϕ is cyclic, of order at most 2.

Cosets: The elements of bbzn can be thought of as equivalence classes of integers, with a ≡ b
if n|b − a. This can be interpreted as saying that b − a lies in the subgroup nZ of Z. This
perspective generalizes:

If H ⊆ G is a subgroup of G, the the left cosets of H in G are the sets aH = {ah : h ∈ H},
and the right cosets of H in G are the sets Ha = {ha : h ∈ H}. Some basic properties:

b ∈ aH ⇔ b = ah for some h ∈ H ⇔ a−1b = h ∈ H ⇔ b−1a ∈ H ⇔ a ∈ bH
b ∈ Ha ⇔ ba−1 ∈ H ⇔ ab−1 ∈ H ⇔ a ∈ Hb
For every a, b ∈ G either aH = bH or aH ∩ bH = ∅
h 7→ ah gives a bijection H → aH
If we choose one element ai from each coset (these are coset representatives) then a1H, a2H, . . .
partitions G into disjoint sets, each the same size as H . This gives:

Lagrange’s Theorem: If H is a subgroup of G, then |H| divides |G| .

Notation: |G| = |H| · [G : H ], where [G : H ] = the number of (distinct) left cosets of H in G
= the index of H in G. There is a completely argument completely parallel to the one we
just gave, which uses right cosets Ha; so [G : H ] is also the number of right cosets of H in
G.

An immediate consequence: for any g ∈ G, |g| = | < g > | divides |G| .
This also gives Euler’s Theorem: if gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n), since we can think
a ∈ Z∗

n, and ϕ(n) = |Z∗

n| = the number of integers 1, . . . , n that are relatively prime to n
(the ‘Euler ϕ-function’).

The map used to establish Cayley’s Theorem (left-multiplication by a fixed element of G)
can also be adapted to left-cosets of a subgroup H . If we let G/H denote the set of left
cosets, then ϕg : G/H → G/H given by ϕg(aH) = (ga)H is well-defined, and gives a
permuation of the left-cosets of H . ϕg then defines a homomorphism ϕ(g) = ϕg from G to
Perm(G/H). If [G : H ] = n is finite, then we can identify Perm(G/H) with Sn by choosing
a (fixed) bijection α : G/H → {1, . . . , n} = X ; then ψ ∈ Perm(G/H) can be identified with
α ◦ψ ◦α−1 : X → X ; the map ψ 7→ α ◦ψ ◦α−1 is an isomorphism. Therefore, a subgroup of
G of index n ‘induces’ a homomorphism ϕ : G → Sn, by the action of G on the left-cosets
of H .

This kind of homomorphism-building occurs more generally. If X is an object with some kind
of structure (think: the ideas we had at the start of the course!), then an action of a group
G on X is a homomorphism ϕ : G → Symm(X); we say that G acts on X (via ϕ). The
action is faithful if ϕ is injective; then G can be identified with a subgroup of the group of
symmetries of X .

Going back to the action of G on left cosets, we get a homomorphism G → Sn, but not just
any homomorphism! Because left multiplication can take any coset aH to any other bH
(the group element g = ba−1 can do that), G acts transitively on the left cosets (G acts
transitively on X if for any x, yinX there is a g ∈ G with g · x = y). We often supress the
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idea of a homomorphism into Symm(X), and write g ·x for ϕ(g)(x), to simplify the notation.

But in order to act transitively, we must have at least [G : H ] elements of ϕ(G) ⊆ Sn; we
need that many elements to send H = eH to all of the [G : H ] cosets of H . So the order
of the image of G in Sn must be at least [G : H ]. So, for example, our work understanding
homomorphisms ϕ : S5 → S4 means that S5 has no subgroups of index 4 (since every
homomorphism to S4 has image of order at most 2).

Having an action of a group G on some object can help us to count things, like the order of
the group itself! This is expressed by the Orbit-Stabilizer Theorem:

If ϕ : G → Symm(X) is an action of G, and x0 ∈ X , then the stabilizer of x0 is stabG(x0) =
{g ∈ G : g · x0 = x0}, the set of group elements which (thought of as symmetries of X) fix
x0. Because products (think: compositions!) of maps which fix x0 also fix x0, the stabilizer
is a subgroup H of G. By Lagrange, then, |G| = |H| · [G : H ], and so if we can determine
both |H| and [G : H ] then we can compute |G|. The point is that [G : H ] can be computed
from the action; it is the size of the orbit orbG(x0) = {g · x0 : g ∈ G} of x0 in X , the set of
points that x0 is sent to by the elements of G. This is because a ·x0 = b ·x0 ⇔ (b−1a) ·x0 = x0
⇔ b−1a ∈ stabG(x0) = H ⇔ aH = bH , and so the map aH 7→ a · x0 is a bijection from the
set of left cosets to the orbit of x0. This gives:

Orbit-Stabilizer Theorem: If G acts on the set X , then for any x0 ∈ X we have |G| =
|stabG(x0)| · |orbG(x0)| .

This can be used to determine the order of G, identify subgroups H = stabG(x0) of G, and
build (via the induced action ofG on an orbit) homomorphisms/representations to symmetric
groups Sn

∼= Perm(orbG(x0)). For example:

G = GL2(Z11) acts on the vector space Z2
11. If we set x0 =

(

1
0

)

, then Ax0 =

(

a b
c d

)

x0 =
(

a
c

)

= x0 when a = 1 and c = 0, so det(A) = ad − bc = d ∈ Z∗

11 implies that H =

stabG(x0) = {

(

1 b
0 d

)

: b ∈ Z11 and d ∈ Z∗

11}, so |H| = 11 · (11 − 1) = 110. On the

other hand, orbG(x0) = {

(

a
c

)

: ad− bc ∈ Z∗

11 for some b, d ∈ Z11} essentially means that

(a, c) 6= (0, 0), and so |orbG(x0)| = 112 − 1 = 120. So |GL2(Z11)| = 110 · 120 = 13200 .

Another example: The group G of rigid motions of a cube permute the vertices, the edges, and
the (square) faces. In particular it permutes the centers of the square faces. If we pick on
of them, x0, then the orbit of x0 is all of the centers of the squares, since we can construct
rotations to send any one to any other. So |orbG(x0)| = 6. Any motion which fixes x0 sends
the square face to itself, and so is ‘really’ a rigid motion of the square. Any such motion is
induced from a rigid motion of the cube, and so stabG(x0) is (isomorphic to) the symmetries
of the square, and so |stabG(x0)| = 8. So |G| = 6 · 8 = 48. Once know this, we can reverse
direction: choosing x0 to be a vertex of the cube, we can see that |orbG(x0)| = 8 (all 8
vertices are in its orbit), and so |stabG(x0)| = 6. [Check: the stabilizer is isomorphic to S3 !]
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