
Math 107H

Topics for the third exam (and beyond)

(Technically, everything covered on the first two exams plus...)

Absolute convergence and alternating series

A series
∑

an converges absolutely if
∑

|an| converges. If
∑

|an| converges

then
∑

an converges. A series which converges but does not converge absolutely is called

conditionally convergent.

An alternating series has the form
∑

(−1)nan with an ≥ 0 for all n.

If the sequence an is decreasing and has limit 0, then the alternating series test
states that

∑

(−1)nan converges. For example,
∑

∞

n=0(−1)n/(n + 1) converges, but not
absolutely, so it is conditionally convergent.

Even more, if the alternating series test implies that
∑

(−1)nan converges, then the

N -th partial sum, sN =
∑N

n=0(−1)nan, is within an+1 of the sum of the series (since all
of the later partial sums lie between sN and sN+1).

So, for example,
∑

∞

n=1(−1)n+1/n2 converges, and
∑99

n=1(−1)n+1/n2 is within 1/(100)2 =
1/10000 of the infinite sum. For the series

∑

∞

n=1 1/n2, on the other hand, the integral test
can only conclude that its tail,

∑

∞

n=100 1/n2, is at most 1/100 .

Power series

Idea: turn a series into a function, by making the terms an depend on x
replace an with anxn ; series of powers

∞
∑

n=0

anxn = power series centered at 0
∞
∑

n=0

an(x − a)n = power series centered at a

Big question: for what x does it converge? Solution from ratio test or root test

lim
∣

∣

∣

an+1

an

∣

∣

∣
= L, or lim |an|

1

n = L, set R =
1

L

then
∞
∑

n=0

an(x − a)n converges absolutely for |x − a| < R

diverges for |x − a| > R ; R = radius of convergence

Ex.:
∞
∑

n=0

xn =
1

1 − x
; conv. for |x| < 1

Why care about power series?

Idea: partial sums

n
∑

k=0

akxk are polynomials;

if f(x)=
∞
∑

n=0

anxn, then the poly’s make good approximations for f

Differentiation and integration of power series

Idea: if you differentiate or integrate each term of a power series, you get a power
series which is the derivative or integral of the original one.

If f(x) =

∞
∑

n=0

an(x − a)n has radius of conv R,

then so does g(x) =

∞
∑

n=1

nan(x − a)n−1, and g(x) = f ′(x)
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and so does g(x) =

∞
∑

n=0

an

n + 1
(x − a)n+1, and g′(x) = f(x)

Ex: f(x) =
∞
∑

n=0

xn

n!
, then f ′(x) = f(x) , so (since f(0) = 1) f(x) = ex =

∞
∑

n=0

xn

n!

Ex.:
1

1 − x
=

∞
∑

n=0

xn, so − ln(1 − x) =
∞
∑

n=0

xn+1

n + 1
(for |x| < 1), so

(replacing x with −x) ln(x + 1) =
∞
∑

n=0

(−1)nxn+1

n + 1
, so

(replacing x with x − 1) ln(x) =
∞
∑

n=0

(−1)n(x − 1)n+1

n + 1

Ex:. arctanx =

∫

1

1 − (−x2)
dx =

∫ ∞
∑

n=0

(−x2)n dx =

∞
∑

n=0

(−1)nx2n+1

2n + 1
(for |x| < 1

Taylor series

Idea: start with function f(x), find power series for it.

If f(x) =
∞
∑

n=0

an(x − a)n, then (term by term diff.)

f (n)(a) = n!an ; So an =
f (n)(a)

n!

Starting with f , define P (x) =

∞
∑

n=0

f (n)(a)

n!
(x − a)n ,

the Taylor series for f , centered at a.

Pn(x) =
n

∑

k=0

f (k)(a)

k!
(x − a)k , the n-th Taylor polynomial for f .

Ex.: f(x) = sin x, then P (x) =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

Big questions: Is f(x) = P (x) ? (I.e., does f(x) − Pn(x) tend to 0 ?)
If so, how well do the Pn’s approximate f ? (I.e., how small is f(x) − Pn(x) ?)

Error estimates

f(x) =
∞
∑

n=0

f (n)(a)

n!
(x − a)n

means that the value of f at a point x (far from a) can be determined just from
the behavior of f near a (i.e., from the derivs. of f at a). This is a very powerful property,
one that we wouldn’t ordinarily expect to be true. The amazing thing is that it often is:

P (x, a) =

∞
∑

n=0

f (n)(a)

n!
(x − a)n ; Pn(x, a) =

n
∑

k=0

f (k)(a)

k!
(k − a)n ;

Rn(x, a)= f(x)− Pn(x, a) = n-th remainder term = error in using Pn to approxi-
mate f

Taylor’s remainder theorem : estimates the size of Rn(x, a)
If f(x) and all of its derivatives (up to n + 1) are continuous on [a, b], then

f(b) = Pn(b, a) +
f (n+1)(c)

(n + 1)!
(b − a)n+1 , for some c in [a, b]
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i.e., for each x, Rn(x, a) =
f (n+1)(c)

(n + 1)!
(x − a)n+1 , for some c between a and x

so if |F (n+1)(x)||leqM for every x in [a, b], then |Rn(x, a)| ≤ M

(n + 1)!
(x − a)n+1

for every x in [a, b]

Ex.: f(x)=sin x, then |f (n+1)(x)| ≤ 1 for all x, so |Rn(x, 0)| ≤ |x|n+1

(n + 1)!
→ 0 as n → ∞

so sinx =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

Similarly, cos x =
∞
∑

n=0

(−1)n

(2n)!
x2n

Use Taylor’s remainder to estimate values of functions:

ex =

∞
∑

n=0

(x)n

(n)!
, so e=e1=

∞
∑

n=0

1

(n)!

|Rn(1, 0)| =
f (n+1)(c)

(n + 1)!
=

ec

(n + 1)!
≤ e1

(n + 1)!
≤ 4

(n + 1)!
since e < 4 (since ln(4) > (1/2)(1) + (1/4)(2) = 1)

(Riemann sum for integral of 1/x)

so since
4

(13 + 1)!
= 4.58×10−11,

e = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · ·+ 1

13!
, to 10 decimal places.

Other uses: if you know the Taylor series, it tells you the values of the derivatives at
the center.

Ex.: ex=
∞
∑

n=0

(x)n

(n)!
, so

xex =
∞
∑

n=0

(x)n+1

(n)!
, so

15th deriv of xex , at 0, is 15!(coeff of x15) =
15!

14!
= 15

Substitutions: new Taylor series out of old ones

Ex. sin2 x =
1 − cos(2x)

2
=

1

2
(1 −

∞
∑

n=0

(−1)n(2x)2n

(2n)!

=
1

2
(1 − (1 − (2x)2

2!
+

(2x)4

4!
− (2x)6

6!
+ · · ·

=
2x2

2!
− 23x4

4!
+

25x6

6!
− 27x8

8!
+ · · ·

Integrate functions we can’t handle any other way:

Ex.: ex2

=
∞
∑

n=0

(x)2n

(n)!
, so

∫

ex2

dx =
∞
∑

n=0

(x)2n+1

n!(2n + 1)

Polar coordinates

Idea: describe points in the plane in terms of (distance,direction).
r = (x2 + y2)1/2 = distance , θ = arctan(y/x) = angle with the positive x-axis.
x = r cos θ , y = r sin θ

The same point in the plane can have many representations in polar coordinates:
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(1, 0)rect = (1, 0)pol = (1, 2π)pol = (1, 16π)pol = . . .
A negative distance is interpreted as a positive distance in the opposite direction (add

π to the angle):
(−2, π/2)pol = (2, π/2 + π)pol = (0,−2)rect

An equation in polar coordinates can (in principal) be converted to rectangular coords,
and vice versa:

E.g., r = sin(2θ) = 2 sin θ cos θ can be expressed as
r3 = (x2 + y2)3/2 = 2(r sin θ)(r cos θ) = 2yx, i.e., (x2 + y2)3 = 4x2y2

Graphing in polar coordinates: graph r = f(θ) as if it were Cartesian; this allows us
to identify the values of θ (= sectors of the circle) where r is positive/negative and in-
creasing/decreasing (i.e., moving away from/towards the origin). Now wrap the Cartesian
graph around the origin, using the values of θ where f = 0 and f ′ = 0 as a guide.

Given an equation in polar coordinates
r = f(θ) , i.e., the curve (f(θ), θ)pol, θ1 ≤ θ ≤ θ2

we can compute the slope of its tangent line, by thinking in rectangular coords:
x = f(θ) cos θ, y = f(θ) sin θ , so
dy

dx
=

dy/dθ

dx/dθ
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ

Arclength: the polar curve r = f(θ) is really the (rectangular) parametrized curve
x = f(θ) cos θ, y = f(θ) sin θ, and (x′(θ))2 + (y′(θ))2)1/2 = (f ′(θ))2 + (f(θ))2)1/2,

so the arclength for a ≤ θ ≤ b is

∫ b

a

(f ′(θ))2 + (f(θ))2)1/2 dθ

Area: if r = f(θ) , a ≤ θ ≤ b describes a closed curve (f(a) = f(b) = 0), then we can
compute the area inside the curve as a sum of areas of sectors of a circle, each with area
approximately

πr2(∆θ/2π) =
(f(θ))2

2
∆θ

so the area can be computed by the integral

∫ b

a

1

2
(f(θ))2 dθ

For the area between two polar curves: if f(θ) ≥ g(θ) for α ≤ θ ≤ β, then

Area =

∫ β

α

1

2
(f(θ))2 − 1

2
(g(θ))2 dθ

Chapter 10: Vectors

Vectors
In one-variable calculus, we make a distinction between speed and velocity; velocity

has a direction (left or right), while speed doesn’t. Speed is the size of the velocity. This
distinction is even more important in higher dimensions, and motivates the ntion of a
vector.

Basically, a vector ~v is an arrow pointing from one point in the plane (or 3-space or
...) to another. A vector is thought of as pointing frm its tail to its head. If it points from

P to Q, we call the vector ~v =
−−→
PQ.

A vector has both a size (= length = distance from P to Q) and a direction. Vectors
that have the same size and point in the same direction are often thought of as the same,
even if they have different tails (and heads). Put differently, by picking up the vector and
translating it so that its tail is at the origin (0,0), we can identify ~v with a point in the
plane, namely its head (x, y), and write ~v = 〈x, y〉. If ~v goes from (a, b) to (c, d), then we

would have ~v= 〈c − a, d − b〉. The length of ~v = 〈a, b〉 is then ||~v|| =
√

a2 + b2.
In 3-space we have three special vectors, pointing in the direction of each coordinate

axis (in the plane there are, analogously, two); these are called
~i = 〈1, 0, 0〉, ~j = 〈0, 1, 0〉, and ~k = 〈0, 0, 1〉

These come in especially handy when we start to add vectors. There are several
different points of view to vector addition:
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(1) move the vector ~w so that its head is on the tail of ~v; then the vector ~v + ~w has
tail equal to the tail of ~v and head equal to the head of ~w;

(2) move ~v and ~w so that their tails are both at the origin, and build the parallelogram
which has sides equal to ~v and ~w; then ~v + ~w is the vector that goes from the origin to the
opposite corner of the parallelogram;

(3) if ~v = 〈a, b〉 and ~w = 〈c, d〉, then ~v + ~w = 〈a + c, b + d〉

x

y

v

wv+w

x

y

v

w v+w

We can also subtract vectors; if they share the same tail, ~v − ~w is the vector that
points from the head of ~w to the head of ~v (so that ~w + (~v − ~w) = ~v). In coordinates, we
simply subtract the coordinates.

We can also rescale vectors = multiply them by a constant factor; a~v = vector pointing
in the same direction, but a times as long. (We use the convention that if a < 0, then a~v
points in the opposite direction from ~v.)

Using coordinates, this means that a〈x, y〉 = 〈ax, ay〉 . To distinguish a from the
coordinates or the vector, we call a a scalar. One consequence of this formula is that
||c~v|| = |c| · ||~v|| .

All of these operations satisfy all of the usual properties you would expect:

~v + ~w = ~w + ~v
(~v + ~w) + ~u = ~v + (~w + ~u)
a(b~v) = (ab)~v
a(~v + ~w) = a~v + a~w

If all that we are interested in about a vector is its direction, then we can choose a
vector of length one pointing in the same direction:

~u =
~v

||~v|| = unit vector pointing in the same diection as ~v .

Of course there is nothing special in all of this about vectors in the plane; all of these
ideas work for vectors in 3-space. The only thing we really need to determine is the right
formula for length: a few applications of the Pythagorean theorem leads us to

||〈a, b, c〉|| = (a2 + b2 + c2)1/2

Dot products

One thing we haven’t done yet is multiply vectors together. It turns out that there
are two ways to reasonably do this, serving two very different sorts of purposes.

The first, the dot product, is intended to measure the extent to which two vectors ~v
and ~w are pointing in the same direction. It takes a pair of vectors ~v = 〈v1, . . . , vn〉 and ~w
= 〈w1, . . . , wn〉, and gives us a scalar ~v • ~w = v1w1 + · · · + vnwn.

Note that ~v •~v = v2
1 + · · ·+ v2

n = ||~v||2. In general, ~v • ~w = ||~v|| · ||~w|| · cos(θ), where θ
is the angle between the vectors ~v and ~w (when they have the same tail); this can be seen
by comparing the Law of Cosines to the formula

||~v − ~w||2 = ||~v||2 + ||~w||2 − 2~v • ~w
This in turn allows us to compute this angle:

The angle Θ between v and w = the angle (between 0 and π with cos(Θ) =
〈v, w〉/(||v|| · ||w||)

The dot product satisfies some properties which justify calling it a product:
~v • ~w = ~w • ~v
(k~v) • ~w = k(~v • ~w)
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~v • (~w + ~u) = ~v • ~w + ~v • ~u

Two vectors are orthogonal (= perpendicular) if the angle θ between them is π/2, so
cos(θ)=0; this means that ~v • ~w = 0. We write ~v ⊥ ~w.

Since | cos θ| ≤ 1, we always have |~v • ~w| ≤ ||~v||||~w|| . This is the Cauchy-Schwartz
inequality. From this we can also deduce the Triangle inequality : ||~v + ~w|| ≤ ||~v||+ ||~w|| .

Projecting one vector onto another:
The idea is to figure out how much of one vector ~v points in the direction of another

vector ~w. The dot product measures to what extent they are pointing in the same direction,
so it is only natural that it plays a role.

What we wish to do is to write ~v = c~w + ~u, where ~u ⊥ ~w (i.e., write ~v as the part
pointing in the direction of ~w and the part ⊥ ~w). By solving the equation (~v − c~w) • ~w =
0, we find that c = (~v • ~w)/(~w • ~w).

We write c~w = proj~w~v =
~v • ~w

~w • ~w
~w=

~v • ~w

||~w||
~w

||~w|| = (orthogonal) projection of ~v onto ~w
.

~u = ~v − c~w = the part of ~v perpendicular to ~w .

Lines and planes in 3-space

Just as with lines in the plane, we can parametrize lines in space, given a point on
the line, P , and the direction ~v that the line is traveling:

L(t) = (x(t), y(t), z(t)) = P + ~vt = (x0 + at, y0 + bt, z0 + ct)
This involves a (somewhat arbitrary) parameter t to describe; we can find a more

symmetric description of the line by determining, for each coordinate, what t is and setting
them all equal to one another:

x − x0

a
=

y − y0

b
=

z − z0

c
To determine if and where two lines in space intersect, if we use the parametrized

forms, we need to remember that the two lines might pass through that same point at
different times, and so we really need to use different names for the parameters:

P + ~vt = Q + ~ws
This gives us three equations (each of the three coordinates) with two variables; it

therefore usually does not have a solutions. Two lines in 3-space that do not meet are
called skew. If two lines do meet, then we can treat them much like in the plane; we can,
for example, determine the angle at which they meet by computing the angle between their
direction vectors ~v, ~w .

For planes, three points P , Q and R that do not lie on a single line will have exactly
one plane through them. To describe that plane, we can think of it as all points X so that−−→
PX can be expressed as a combination of

−−→
PQ and

−→
PR. What is really needed to describe

this plane, in some sense, is the point P = (x0, y0, z0) and the vector ~(N) = 〈a, b, c〉 = the

normal vector to the plane; a point Q is in the plane if
−−→
PQ is perpendicular to ~(N). In

other words, to completely describe a plane we can use knowledge of a single point that the

plane passes through, P , and what direction “up” is, namely the vector ~(N) perpendicular
to the plane (i.e, the vector perpendicular to every vector lying in the plane). We can then
write the equation for the plane as

〈x, y, z〉 • ~N = P • ~N
Note that if we are given the equation for the plane, we can quickly read off its normal

vector; it is the coefficients of x, y, and z.

Intersecting planes: typically, two planes will intersect in a line (unless they are paral-
lel, i.e., their normals are multiples of one another). We can find the parametric equation
for the line by solving each equation of the plane for x, say, as an expression in y and z.
Setting these two expressions equal, we can express y, say, as a function of z. Plugging
back into our original expression for x, we get x as a function of z. So x, y, and z have all
been expressed in terms of a single variable, z, which is exactly what a parametric equation
does!
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Distance from point to plane: The point X in a plane with equation
−−→
PX • ~N = 0

which is closest to a point Q has
−−→
QX pointing in the same (or opposite) direction as ~N .

But
−−→
QX =

−−→
PX −−−→

PQ = c ~N means that

c|| ~N ||2 = c ~N • ~N =
−−→
QX • ~N = (

−−→
PX) −−−→

PQ) • ~N = −−−→
PQ • ~N

and so ||−−→QX|| = |c| · || ~N || =
|c · || ~N ||2|

|| ~N ||
=

|−−→PQ • ~N |
|| ~N ||

is the distance from Q to the plane.

Angle between planes: if two planes meet, they meet in a line, and at an angle =
the angle formed by the lines made by the planes meeting a plane perpendicular to their
intersection line. This angle is the same as the (acute!) angle formed by normal vectors to
the two planes (note that a plane has two normal directions!). Since the normals can be
read off from the coefficients of the equations for the planes, the angle between the planes
can be computed from these coefficients, as well.

Vector-valued functions

Basic idea: think of a parametric curve in 3-space.

~r(t) = (x(t), y(t), z(t))
If we think of t as time, then what ~r does is give us a point in 3-space at each moment

of time. Thinking of ~r as the position of a particle, the particle sweeps out a path or curve,
C, in 3-space as time passes.

Example: lines; they can be described as having a starting place and a direction they
travel, and so can be parametrized by ~r(t) = P + t~v, where P is the starting point and ~v
is the direction (for example, the difference of two points lying along the line).

Vector function calculus

We can extend the concept of a limit to vector-valued functions by thinking in terms
of distance; ~r(t) approaches L as t goes to a if the distance between ~r(t) and L tends to 0.
This in turn is the same as insisting that each coordinate function x(t), y(t), z(t) tends to
the corresponding corrdinate of L as t goes to a. So in particular, a vector function ~r(t) is
continuous at a if each of its coordinate functions x, y, z are continuous at a.

When we think of t as time, we can imagine ourselves as travelling along the parametrized
curve ~r(t), and so at each point we can make sense of both velocity and acceleration. Ve-
locity, which is the instantaneous rate of change of position, can be calculated as the limit
of the usual difference quotient, using the ideas above; but since limits can really be com-
puted one coordinate at a time, the derivative of ~r(t) = x(t), y(t), z(t) is ~v(t) = ~r′(t) =
x′(t), y′(t), z′(t) .

Some basic properties:

(~r + ~s)′(t) = ~r′(t) + ~s′(t)
(f(t)~r(t))′ = f ′(t)~r(t) + f(t)~r′(t)
(~r • ~s)′(t) = ~r′(t) • ~s(t) + ~r(t) • ~s′(t)
(~r × ~s)′(t) = ~r′(t) × ~s(t) + ~r(t) × ~s′(t)

Similarly, acceleration can be computed as ~a(t) = ~r′′(t) = x′′(t), y′′(t), z′′(t) ; it is the rate
of change of the velocity of ~r(t) .

One useful fact: if the length of the velocity (i.e., its speed), ||~v(t)|| is constant, then
~a(t) is always perpendicular to ~v(t)

And speaking of length, we can compute the length of a parametrized curve by inte-
grating its speed: the length of the parametrized curve ~r(t), a ≤ t ≤ b, is

Length =

∫ b

a

||~v(t)|| dt

Since vector functions have derivatives, which are also vector functions, they therefore

have antiderivatives; ~R(t) is the antiderivative of ~r(t) if ~R′(t) = ~r(t). Since derivatives can
be computed by taking the derivative of each coordinate function, its antiderivative can
be computed by taking the antiderivative of each coordinate.
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