
Math 423/823 Exam 2 Topics Covered

Don’t forget the topics from the first exam!

Logarithms: f(z) = ez is not a one-to-one function (e2πi = 1 = e0), so doesn’t have
an inverse in the usual sense, but it does have a multi-valued inverse g(z) = log(z). [Ap-
parently in complex variables, logarithms to other bases just aren’t as popular...] We can

find an expression for it by writing w = u + vi = ez = ex+yi = (ex cos y) + i(ex sin y) and
expressing x and y in terms of u and v:

u2 + v2 = (ex)2, so x = ln(
√

u2 + v2) = ln |w|
tan(y) = v/u, so y = arctan(v/u) = arg(w)

So log(w) = ln |w|+i arg(w). Writing this as g(z) = log(z) =
1

2
ln(x2+y2)+i arctan(y/x) =

u + iv, the CR equations are satisfied, and so

g′(z) = ux + ivx =
x

x2 + y2
+ i

−y

x2 + y2
=

z

|z|2 =
1

z
!

Branches: arg(z) is multi-valued; we can add multiples of 2π. So log(z) is multi-valued,
too. If we want a (single-valued) function, we must restrict the values of arg(z). If we
make the ‘standard’ choice (π < Arg(z) ≤ π), we get the principal branch of the logarithm:

Log(z) = ln |z| + iArg(z). This function is analytic on the complex plane with the (origin
and) the negative x-axis removed.

We could just as well define arg(z) (and so log(z)) by insisting that it take values in
(α, α + 2π]; then log(z) is analytic in the plane with the ray arg(z) = α removed.

Because of these ambiguities, some of the familiar properties of logarithms fail to hold
(when we insist that it be single-valued). For example,

Log(i) = πi/2, but Log(i3) = Log(i) = −πi/2, which is different from 3Log(i) = 3πi/2.
So we cannot expect that log(ab) and b log(a) will always be equal to one another.
However, if we are willing to think of log(z) as a multi-valued function, then the familiar
identities will work: since Arg(z1z2) and Arg(z1)+Arg(z2) will always differ by a multiple
of 2π, if we interpret arg(z1)+arg(z2) as the collection of all possible sums of the multiple
values of the summands, then

arg(z1z2) and arg(z1)+arg(z2) is true. applying this same approach to the multiple values
of log(z), we then find that

log(z1z2) = log(z1) + log(z2) and log(zr) = r log(z) (for r a rational number)

hold true as multi-valued expressions.

Complex exponentiation: With the exponential and logarithm functions, exp(z) = ez

and log(z), we can follow the practice from calculus to define exponentials in general:
ab = exp(log(ab)) = exp(b log(a)) So for example, zc = exp(c log(z)) can be treated as a
single-valued function once a branch (α < arg(z) ≤ α + 2π) of arg(z) is chosen, and then
the chain rule can be used to show that (zc)′ = czc−1 (in particular, f(z) = zc is analytic
off of the ray arg(z) = α). Similarly, for any a 6= 0 we can define az = exp(z log(a)), and
, again, choosing a particular value for log(a) makes this a single valued function, whose
derivative, by the chain rule, is az log(a).
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Inverse Trig functions: these again will be multi-valued functions, but by exploiting
some complex variables we can give actual formulas for them!

Since w = sin(z) =
eiz − e−iz

2i
, we have (eiz)2−2iw(eiz)−1 = 0. Solving this (quadratic!)

equation for eiz and taking log’s, we get iz = log(iw ±
√

1 − w2), so (since
√

blah already
has the ambiguity of sign)

z = arcsin(w) = −i log(iw +
√

1 − w2), where this is treated as a multivalued function.
Choosing the principal logarithm (and the principal branch of the square root function)
yields one choice of single-valued function, Arcsin(w).

Taking the derivative of this expression yields (with some work) the usual formula

(arcsin(z))′ = (1 − z2)−1/2

Similarly, w = tan z =
sin z

cos z
yields z =

i

2
log

( i − w

i + w

)

, and so

arctan z =
i

2
log

( i − z

i + z

)

, with derivative (arctan z)′ =
1

1 + z2
!

Integration: Modelled on line integrals (integrate vector field around a parametrized
curve), except instead of dot product we will use complex multiplication.

Complex-valued function of a real variable γ(t) = x(t) + iy(t) ; think of (sometimes!) as a
parametrized curve running around in the complex plane.

Derivative: γ′(t) = x′(t) + iy′(t)

Usual differentiation rules work: sum, difference, product, quotient

Chain Rule: f(x + iy) = u + iv, γ(t) = x(t) + iy(t), then [f(γ(t))]′ = f ′(γ(t)) · γ′(t) .

Integral (of a complex-valued function of a real variable): f(t) = x(t) + iy(t)
∫ b

a

f(t) dt =

∫ b

a

x(t) dt + i

∫ b

a

y(t) dt

Usual integration rules work: constant multiple, sum, difference, u-substitution, integra-
tion by parts

Contours = parametrized curves in the complex plane: z(t) = x(t) + iy(t)

continuous: both x(t) and y(t) are continuous
differentiable: both x(t) and y(t) are differentiable

Typically: insist that contour is continuous, and differentiable except possibly at a finite
number of points (“piecewise differentiable”)

Simple path = path that never visits the same point in the plane twice (except that maybe
the two endpoints agree)

Reparametrization: don’t change where the path goes, just when! f(φ(t)), where φ is
either always increasing or always decreasing.

By the chain rule, [f(φ(t))]′ = f ′(φ(t)) · φ′(t)

2



Arclength: |γ′(t)| = size of rate of change = ‘speed’;

∫ b

a

|γ′(t)| dt = length of the curve γ

Arclength is unchanged under reparametrization (why? u-subs)

Closed curve = parametrized curve γ : [a, b] → C with γ(a) = γ(b)

Jordan Curve Theorem: Every simple closed curve γ separates the complex plane C

into two regions R and S, exactly one of which is bounded (= for some R, every point lies
within R of the origin). γ is called positively oriented if as we traverse γ (with increasing t)
its bounded region always lies to our left. (This is also the ‘counterclockwise’ orientation
around γ.)

Contour Integrals: For a complex-valued function w = f(z) and a contour z = γ(t),
a ≤ t ≤ b, the contaour integral of f along γ is defined as

∫

γ

f(z) dz =

∫ b

a

f(γ(t)γ′(t) dt

(if the limit exists). This integral was designed so that the number is unchanged under
(orientation-preserving, i.e., φ′(t) > 0) reparametrization of γ. [It picks up a minus sign
(-) under orientation-reversing reparametrization.]

This integral satisfies the usual properties: behaves as expected under constant multiple,
sums, differences; if the contour is split into pieces, the integral is the sum of the integrals
over the pieces.

Motivating example: for γ(t) = eit, 0 ≤ t ≤ 2π,

∫

γ

dz

z
= 2πi

The idea: f(z) = 1/z has an antiderivative F (z) = Log(z), except that this function is not
defined on the negative x-axis. The failure of the antiderivative to be well-defined on all
of the curve contributes to the non-zero result.

Fundamental Theorem of Complex Calculus: If w = F (z) is analytic on a domain
D, F ′(z) = f(z) on D, and γ : [a, b] → D is a contour that lies entirely in D, then

∫

γ

f(z) dz = F (γ(b))− F (γ(a))

In particular, the value of the integral depends only on the endpoints, and not on the
particular curve used to join those endpoints. Note that this is really the same as saying
that

∫

γ
f(z) dz = 0 for γ any closed path.

A basic inequality:
∣

∣

∣

∫ b

a

z(t) dt
∣

∣

∣
≤

∫ b

a

|z(t)|dt

So: If |f(z)| ≤ M along a curve γ of length L, then
∣

∣

∣

∫

γ

f(z) dz
∣

∣

∣
≤ LM

Application: if w = f(z) satisfies |f(reiθ| ≤ M(r) for all θ, for some function M(r), and

rM(r) → 0 as r → ∞, then for the curves γr(t) = reit, θ0 ≤ t ≤ θ1,

∫

γr

f(z) dz → 0 as

r → ∞.
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The ‘second’ FTC, i.e., its converse!: If D is an open (connected) domain and f is a
function so that for any curve γ : [a, b] → D in D,

∫

γ
f(z) dz depends only on γ(b) and

γ(a), then f has an antiderivative F . It can be given (choosing a ‘base’ point z0 ∈ D) as:

F (z) =
∫

γ
f(w) dw where γ is any curve from z0 to z

So having an antiderivative on D is the same as having integral 0 around any closed curve
in D.

Cauchy-Goursat Theorem: If w = f(z) is analytic on and inside of the simple closed
curve γ, then

∫

γ
f(z) dz = 0.

[Cauchy assumed f ′(z) is continuous, in order to use Green’s Theorem!] This implies that
if you are analytic, then you have an antiderivative.

Analyticity on and inside of the curve γ can be obtained ‘for free’ if f is analytic on a simply-

connected domain D and γ lies entirely in D. D is simply connected if it is connected (any
two points in D can be joined by a path in D) and for every simple closed curve [notation:
scc] γ in D the bounded region guaranteed by the Jordan curve theorem lies in D. A
domain which is not simply-connected is (unfortunately) called multiply connected.

Example: the complex plane C is simply-connected, as are the upper half-plane {z =
x + iy : y > 0} and the points lying off of any one ray {reia : r ≥ 0} (for a fixed a ∈ R).
So, e.g., for any entire function f (think: z2, ez, sin z, etc.) and any simple closed curve γ,
∫

γ
f(z) dz = 0.

If f is analytic on γ but not at every point inside of γ (which we assume is positively
oriented), then is we surround the points of non-analyticity inside of γ with positively-
oriented (and disjoint) simple loops γ1, . . . , γn, so that f is analytic at every point that is
inside of γ and outside of every one of the γi, then

∫

γ

f(z) dz =

∫

γ1

f(z) dz + · · ·+
∫

γn

f(z) dz

(This followed from Cauchy-Goursat by stitching together all of these loops into a single
‘almost’ simple loop.)

So, e.g., if δ lies inside of γ (i.e., lies in the region it bounds), and f is analyic at every point

between the two scc’s [and both are positively or negatively oriented], then

∫

γ

f(z) dz =
∫

δ

f(z) dz. We often use this to trade an ‘ugly’ loop for something more standard (usually

δ(t) = z0 + r0e
it for fixed z0 and r0).

Cauchy Integral Formula: If f is analytic on and inside of a positively oriented scc γ,
then

1

2πi

∫

γ

f(z)

z − z0
dz = f(z0)

This has far-reaching consequences. It says that knowing the values of f along γ (and
knowing that it is analytic inside of γ) is enough to be able to compute the value of f at
every point inside of γ. It also gives us the tools to compute a wide range of integrals that
are otherwise out of reach. It also gives us the tool to show the results below!

4



If f is analytic on and inside of (pos. or’d) γ, then
n!

2πi

∫

γ

f(z)

(z − z0)n+1
dz = f (n)(z0) .

In part, f is (infinitely) differentiable! so f ′(z) is analytic! But since f = u + iv has
f ′(z) = ux + ivx = vy − iuy, this implies that ux, vx, uy, vy are all differentiable (and
continuous). [These are facts we used before; now we have justified them.] Also, if you
have an antiderivative, then you are analytic. So analytic functions are precisely the
functions that have antiderivatives!

The same demonstration used for CIF shows that if γ is a simple closed curve and g is a
function defined on γ, then for D the region lying inside of γ and the function f : D → C

defined by

f(z) =
1

2πi

∫

γ

g(s)

s − z
dz

is an analytic function on D ! It’s derivative is f ′(z) =
1

2πi

∫

γ

g(s)

(s − z)2
dz ...

Cauchy’s Inequality: If F is analytic on and inside of a circle CR(t) = z0 + Reit, and

MR is the maximum of F on the circle CR, then |f (n)(z0)| ≤
n!MR

Rn
.

Liouville’s Theorem: If f is an entire function and for some M we have |f(z)| ≤ M for
all z, then f is constant.

Fundamental Theorem of Algebra: Every polynomial with complex coefficients, of
degree greater than 0, has a complex root.

Why? Otherwise g(z) = [f(z)]−1 is a non-constant bounded entire function! The FTA
implies that every polynomial completely factors as a product of linear polynomials. Over
the reals, this means that every polynomial with real coefficients can be written as a
product of linear and irreducible quadratic factors.

Some definite integral computations: Using sin t =
eit − e−it

2i
and cos t =

eit + e−it

2
,

we can write integrals

∫ 2π

0

F (sin t, cos t) dt as contour integrals around the unit circle

γ(t) = eit. Essentially, using the z = eit, dz = ieit dt, so dt =
dz

iz
, and sin t =

z − z−1

2i
and

cos t =
z + z−1

2
. So

∫ 2π

0

F (sin t, cos t) dt =

∫

γ

F
(z − z−1

2i
,
z + z−1

2

) dz

iz

By expressing the integrand as a rational function in z and finding the roots of the denom-
inator which lie inside of the curve γ, we can (often) apply the Cauchy Integral Formula
to evaluate the integral. For example, we found that

∫ 2π

0

dt

a + sin t
=

2π√
a2 − 1

for any a > 1
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Maximum Modulus Principle: If D is an open domain and f is a non-constant analytic
function on D, then |f(z)| never achieves a maximum value at any point in D.

As this is usually uysed, it is interpreted to as that if f is analytic on and inside of a scc
γ (or between a collection of curves γi), then |f(z)| (which is continuous!) must achieve is
maximum on underbarthe underbarcurve γ (or on one of the curves γi).

As an application, for any function u(x, y) that is harmonic on a domain D, building its
harmonic conjugate v, and the analytic function f(x + iy) = eu(x,y)+iv(x,y), the MMP
implies that u must achieve its maximum only on a boundary curve of D (or not at all...).

Things we know how to do:

establish (or show the failure of) identities involving logarithms, trig functions, etc.

compute solutions to f(z) = a for f a logarithm, trig function, exponential, etc.

compute derivatives involving logarithms, exponentials, etc.

compute integral of complex-valued function of real variable

use integrals of complex-valued functions to find integrals of real-valued functions

compute contour integrals by converting to the above

compute contour integrals using Cauchy-Goursat and Cauchy Integral Formula

Use Cauchy integral formula to obtain information about derivatives of analytic function

compute integrals of real-valued functions by expressing as real/imaginary part of contour
integral

use Cauchy’s Inequality to obtain information about an analytic function (model: Liou-
ville’s Theorem)
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