
Math 423/823 Topics Covered Since Exam 2

Don’t forget the topics from the first two exams!

Power Series: Our basic guiding principle is that everything behaves the way it does for
calculus/real variables, only more so!

∞
∑

n=0

an converges to L if the partial sums SN =
N

∑

n=0

an are eventually as close to L as we

would ever need them to be: |SN − L| → 0 as N → ∞.
∞
∑

n=0

(an + bn) =

∞
∑

n=0

an +

∞
∑

n=0

bn hskip.2in

∞
∑

n=0

can = c

∞
∑

n=0

an

Power Series: f(z) =

∞
∑

n=0

anzn ; domain = the z for which it converges!

Our basic workhorse series:

∞
∑

n=0

zn =
1

1 − z
; converges for |z| < 1, diverges for |z| > 1.

The big theorem: If w = f(z) is analytic at z = z0 (so there is a largest R so that f is
analytic for all z with |z − z0| < R [possibly R = ∞], then the power series

∞
∑

n=0

f (n)(z0)

n!
(z − z0)

n

converges for all |z − z0| < R and equals f(z) there.

So, e.g., f(z) = ez is an entire function, and f (n)(0) = 1 for all n, so ez equals the power
series you remember from calculus, for all complex numbers z. The same is true for the
familiar power series representations of sin z, cos z, etc.

Prop: If f(z) =

∞
∑

n=0

an(z − z0)
n converges for some z = z1, then setting R = |z1 − z0|, f

converges for all |z − z0| < R.

So if f(z) =
∞
∑

n=0

an(z − z0)
n does not converge for some z = z2 (and r = |z2 − z0|), then f

does not converge for any z with |z − z0| > r, because if it did converge, it would have to
converge at z = z2, too. The closest point z1 to z0 for which f does not converge defines
the circle of convergence |z − z0| = R = |z1 − z0|; inside of this circle, the series converges;
outside of the circle, it diverges.

Laurent series: Even when a function f fails to be analytic at a point z = z0, if it is
analytic in a deleted neighborhood 0 < |z− z0| < R around z0 we can still represent it as a
series centered at z0. We ‘just’ need to allow for negative exponents! A power series with
both negative and (possibly) positive exponents is called a Laurent series.

Again, our basic workhorse for doing this is f(z) =
1

1 − z
; for |z| > 1,
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1

1 − z
= − 1/z

1 − 1/z
= −1

z

∞
∑

n=0

(1

z

)n

=
∞
∑

n=−1

(−1)z−n =
−1
∑

n=−∞

(−1)zn,

since |1/z| < 1. Based on this, we can show:

If w = f(z) is analytic on a ring R1 < |z − z0| < r2 centered at z = z0, then f can be
expressed as a Laurent series

f(z) =

∞
∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn(z − z0)
−n =

∞
∑

n=−∞

cn(z − z0)
n,

where, for C = any simple closed curve (oriented counterclockwise) lying in the ring and
containing z0 in its bounded complementary region, we have

cn =
1

2πi

∫

C

f(z)

(z − z0)n+1
dz

Note that if f is actually analytic on all of |z − z0| < R2, then for n ≤ −1,
f(z)

(z − z0)n+1
=

f(z)(z−z0)
−(n+1) is also analytic (the exponent is non-negative), so cn = 0 by the Cauchy-

Goursat Theorem. So all of the coefficients of negative powers are zero.

Just as in calculus, inside of its circle(s) of convergence a power series

f(z) =
∞
∑

n=−∞

cn(z− z0)
n is continuous, is differentiable, and its derivative can be obtained

by term-by-term differentiation of its Taylor/Laurent series. This implies that a power
series is analytic inside of its circle(s) of convergence. It then has an antiderivative, which
may be obtained by term-by-term antidifferentiation. These facts allow us to build new
power series representations for analytic function from old ones, much as is done in calculus.

Also in analogy with calculus, an analytic function f has a unique power/Laurent series
representation which converges at any given point. [Note however that f can have different
Laurent series representations centered at a particular point z0, but the series will converge
on different rings that share no point in common.]

Residues: From the formula for the coefficients of a Laurent series for an analyic function
f we find in particular that
∫

C
f(z) dz = (2πi)(the coefficient of (z − z0)

−1 in the Laurent series)

if f is analytic on and inside of C (oriented counterclockwise), except (possibly) at z = z0.
This can be a very useful tool for computing many contour integrals, if finding the coeffi-
cients of the Laurent series requires less effort than the computation of the integral directly.
For example, f(z) = e1/z is analytic everywhere except at z = 0, and by substituting 1/z
into the Taylor series for ez (and relying on the fact that the resulting Laurent series for f
is the Laurent series for f), we can read off the coefficient, 1, of z−1 in the series for e1/z to
conclude that

∫

C
e1/z dz = (2πi)(1) for any s.c.c traveling counterclockwise around z = 0.

The coefficient of (z−z0)
−1 plays an important enough role in complex integration that we

give it a name: a singularity z0 of f (= a point where f is not analytic) is called isolated if f
is analytic on some deleted neighborhood about z0. For any isolated singularity z0 of f , the
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residue of f at z = z0, denoted Resz=z0
f(z), is the coefficient of (z−z0)

−1 in the Laurent
series expansion of f for the deleted neighborhood of z0. It also equals 1/(2πi)

∫

C
f(z) dz

for any (small) simple closed curve C traveling counterclockwise around z0. Using an
earlier integration result (replacing a curve C with curves ci inside it, where f is analytic
between them), we get the

Residue Theorem: If C is a simple closed curve (oriented counterclockwise), and f is
a function which is analytic on and inside of C, except at a finite number z1, . . . , zn of
isolated singularities of f , none of which lie on C, then

∫

C

f(z) dz = (2πi)
n

∑

i=1

Resz=zi
f(z)

This means that if we have a way to compute residues (i.e, coefficients of (z− z0)
−1 in the

Laurent series) at isolated singularities, then we have a way to compute contour integrals.

Isolated singularities z = z0 come in three basic flavors, based on the behavior of the

coefficients f(z) =

∞
∑

n=−∞

cn(z − z0)
n for n < 0.

If cn = 0 for all n < 0, then by defining f(z0) = c0, f becomes analyic at z = z0. z0 is
then called a removable singularity.

If c−m 6= 0 for some m > 0 but cn = 0 for all n < −m, then z0 is called a pole of order m
for f . In this case (which is the one we most often encounter), f(z) = (z − z0)

−mg(z) for
some function g which is analytic at z = z0. The residue of f at z = z0 is then equal to
the coefficient of (z − z0)

−1 in the Taylor series for (z − z0)
−mg(z), which is equal to the

coefficient of (z − z0)
m−1 in the Taylor series for g(z), which is

g(m−1)(z0)

(m − 1)!
. That deserves

being said twice!

If (z − z0)
mf(z) = g(z) is analytic at z0 for some m > 0, then Resz=zi0f(z) =

g(m−1)(z0)

(m − 1)!

The final kind of singularity has cn 6= 0 for infninitely many negative values of n. Such a
singularity is called an essential singularity. For example, z = 0 is an essential singularity
for f(z) = e1/z, for f(z) = z9004 sin(1/z), and other similarly constructed functions. Com-
puting residues at essential singularities usually involves identifying how to build it from
other anaytic functions whose Laurent series we know, and constructing its Laurent series
from the known one. The main fact about essential singularities (which we will not much
use) is:

The Great Picard Theorem: If z0 is an essential singularity for f , then except possibly for
one value c, for every ε > 0 the equation f(z) = c has infinitely many solutions on the
deleted neighborhood 0 < |z − z0| < ε.

One immediate consequence of this is that if f is an entire function that is not a polynomial,
then, with possibly one exception, f(z) = c has infinitely many solutions, since f(1/z) has
an essential singularity at z = 0.
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The residue at ∞:
∫

C
f(z) dz can be computed from the residues of the singularities

lying inside of C. But if there are fewer singularities lying outside of C, we would rather
use them! To do so, we need to define the residue at ∞ of f , as the negative of the
sum of the residues of f , so that the sum of “all” residues are 0, But the residue at ∞
can be computed in an alternate way: thinking of it as the integral of f around a very
large clockwise curve, the substitution w = 1/z will turn this integral into the integral of

− 1

w2
f
( 1

w

)

around a very small (counterclockwise) curve around 0, so

Resz=∞f(z) = −Resz=0
1

z2
f
(1

z

)

Using this, countour integrals can be computed using residues inside or outside of C, as
we wish.

Zeros of analytic functions: One observation we can draw from our discussion of poles
has nothing to do with poles. If f is a non-constant analytic function with f(z0) = 0,
then the Taylor series for f cannot have all coefficients 0, so there is a smallest m so that
f(z) = (z − z0)

mg(z) with g(z0) 6= 0 (m = the index of the first non-zero coefficient.) But
then g is analytic (we can extract its power seires from f ’s), so is continuous, so g(z) 6= 0
for all z close enough to z0. But (z − z0)

m 6= 0 for all z 6= z0, so we find that the zeros of
(non-constant) analytic functions are isolated. The same sort of reasoning shows that at
a pole z0 of f , |f(z)| → ∞ as z → z0.

In particular, this result implies that if f and g are analytic at z = z0, and if for a sequence
zn converging to z0 we have f(zn) = g(zn), then f = g in a neighborhood of z0. This is
because f(z)−g(z) has a zero at z0 which is not isolated! Essentially, an analytic function
is determined by its values on any convergent sequence.

Residues are useful in computing contour integrals. But coupled with some facts we have
developed along the way, residues can be used to compute many integrals from real variable
calculus that are very difficult or impossible to do in any other way. In most cases that we
have studied, these are improper integrals
∫ ∞

−∞

f(x) dx or

∫ ∞

0

f(x) dx, which we approach by using the contours

C(t) = the line segment from −R to R, followed by the semicircle Reit from R = R+0i to
−R. The integral over C can be computed as 2πi times the sum of the residues lying inside
of C. But for many functions, for R large enough, the integral of f over the semicircle
can be shown to be small; all that we need, for example, is to know that |zf(z)| → 0 as
|z| → ∞ (which we can establish if the ‘degree’ of the denominator is at least 1 higher

than the degree of the numerator). The integral over C is then approximately

∫ R

−R

f(x) dx,

whose limit as R → ∞ is

∫ ∞

−∞

f(x) dx. (Technically, it is what is really called the Cauchy

Principal Value = PV of the integral, P.V.

∫ ∞

−∞

f(x) dx, but in most cases we can show

that it is equal to the improper integral.)
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Some extra precautions need to be taken when a multiple-valued function, such as log(z)
or z1/n is involved, to take into account/avoid the branch curve that we need to introduce

(and avoid!) in order to work with the function. For example, computing
∫ ∞

0

√
x

(x2+1)2 dx

can be done by choosing the branch curve to be the negative imaginary axis and integrating√
z

(z2 + 1)2
over the curve C described above, except that we need to hop ‘over’ the origin

(since it lies on the branch curve). The integral over C (which can be computed from the
residue of the one singularity z = i lying inside of C) is then the sum of
∫ −1/R

−R

√
x

(x2 + 1)2
dx,

∫ R

1/R

√
x

(x2 + 1)2
dx, and integrals over a very small semicircle of radius

1/R and a very large semicircle of radius R.

The first integral is an imaginary number, since from our choice of branch of the square root,√
x = i

√

|x|. The two semicircle will give integrals that are small, the first since the curve
is short (and the function has small modulus near 0), and the second because the function
is getting small fast enough to compensate for the increasing length of the curve. So our

residue computation ends up giving us the sum i

∫ ∞

0

√
x

(x2 + 1)2
dx +

∫ ∞

0

√
x

(x2 + 1)2
dx,

equating real and imaginary parts yields our desired integral.

Integrating (rational) functions of sin x, cos x : Such definite integrals from 0 to 2π
can be treated quite generally: using the identities

sin t =
eit − e−it

2i
and cos t =

eit + e−it

2
,

the substitution z = eit (so dt =
dz

iz
) can turn these integrals into integrals of (usually

rational) functions of z over the unit circle C(t) = eit, 0 ≤ t ≤ 2π, which we can (often)
compute using residues.
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