Math 423/823 Exercise Set 4

Due Thursday, Feb. 17

13. [BC#2.18.11] Show that if $T(z) = \frac{az + b}{z}$ $\frac{az + b}{cz + d}$ (where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$ then

- (a) if $c = 0$ then $\lim_{z \to \infty} T(z) = \infty$.
- (b) if $c \neq 0$ then $\lim_{z \to \infty} T(z) = \frac{a}{c}$ $\mathcal{C}_{0}^{(n)}$ and $\lim_{z \to -d/c} T(z) = \infty$.
- 14. [BC#2.20.9] Let f be the function $f(z) = \begin{cases} \frac{z}{z}^2/z & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$ 0 if $z = 0$.

Show that f is not differentiable at 0 , even though the limit of the difference quotient exists (and both agree) when you let $\Delta z \rightarrow 0$ along the vertical and horizontal axes; show that if you approach 0 along the line $h = k$ (where $\Delta z = h + i k$) you find a different limit.

15. [BC#2.23.6] Revisit problem #14 from the viewpoint of the Cauchy-Riemann equations. That is, write $f(z) = f(x + iy) = u(x, y) + iv(x, y)$ (noting that we define $u(0,0) = v(0,0) = 0$. Show that u_x, u_y, v_x , and v_y all exist at $(0,0)$ and that they satisfy the Cauchy-Riemann equations at $(0, 0)$.

[N.B. This shows that the CR equations alone are not enough to guarantee differentiability at a point.]

16. Let $f(z) = z^3 + 1$ and $a =$ $1+\sqrt{3}i$ 2 $, b = \frac{1 - \sqrt{3}i}{2}$ 2 . Show that there is no value of w on the line segment { $1 + t\sqrt{3}i$ $\frac{t\sqrt{3}i}{2}$: $-1 \le t \le 1$ where $f'(w) = \frac{f(b) - f(a)}{b - a}$ $b - a$.

(Note: It is probably most efficient to determine all of the w for which $f'(w) =$ that specific value, and show that none of those points lie on the line segment!)

[N.B. Consequently, the direct analogue of the Mean Value Theorem (central to most theoretical results in calculus!) does not hold in general for analytic functions.]