
Math 423/823 Final Exam Practice Problems: Solutions

[Note: These solutions were generated without much effort at checking, so the actual
numbers could be off, but the essential process should be correct. Use them mostly to
judge whether you have followed the process correctly... And if you do think some of the
answers are wrong, let your instructor know!]

1. For z = x+ yi , does 1z always equal 1 ?

By definition, az = ez log(a). So 1z = ez log(1). But log(1) = ln |1| + i arg(1) =
0+ i(0+2kπ) = 2kπi , depending on which branch of arg(z) we choose. So 1z = e2kπiz

which, depending on our choice of k, need not equal 1. For k = 0, 1z = e0z = e0 = 1,

but for, e.g., k = 1, 1i = e2πii = e−2π 6= 1. So depending upon which value of log(1)
that we choose, 1z need not equal 1.

Shorter, pithier solution: 11/2 should be allowed to be −1, under any reasonable
definition of exponentials, so, no.

2. Find the value of

∫

C

f(z) dz, where f(z) = f(x+ iy) = x2 − iy2 and

C(t) = eit for 0 ≤ t ≤ π.

Using the parametrization given, as C(t) = eit = cos(t) + i sin(t), we have C′(t) =
− sin(t) + i cos(t), so
∫

C

f(z) dz =

∫ π

0

(cos2 t − i sin2 t)(− sin t + i cos t) dt =

∫ π

0

− sin t cos2 t + i cos3 t +

i sin3 t− i
2 cos t sin2 t dt =

∫ π

0

− sin t cos2 t+cos t sin2 t+ i cos t(1− sin2 t)+ i sin t(1−

cos2t) dt = [(1/3) cos3 t + (1/3) sin3 t + i(t − (1/3) sin3 t) − i(t − (1/3) cos3 t)]|π0 =
[(−1/3) + 0 + i(π − 0) − i(π + (1/3))] − [(1/3) + 0 + i(0 − 0) − i(0 − (1/3))] =
[−1/3− (1/3)i ]− [1/3 + (1/3)i ] = −2/3− (2/3)i

3. Find the integral of the function f(z) =
z

z3 + 1
around the simple closed curve

C(t) = [3 + sin(5t)] cos t+ i [3 + sin(2t)] sin t , 0 ≤ t ≤ 2π. [See figure below.]
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f(z) is analytic except where the denominator is zero, i.e., z3 = −1 = eiπ ,



so except for
z = eiπ/3 = z1, z = e3iπ/3 = eiπ = −1 = z2, and z = e5iπ/3 = e−iπ/3 = z3.
In part, z3 + 1 = (z − z1)(z − z2)(z − z3) .

We note that each of these three points lie inside of the curve C; C travels around
the origin at a distance of between 3 − 1 = 2 and 3 + 1 = 4, so encircles these three
points, which all sit at a distance of 1 from the origin.

If we draw small circles Ci around each of the points zi, in the counterclockwise
direction, then from Cauchy’s Theorem we know that
∫

C

f(z) dz =

∫

C1

f(z) dz +

∫

C2

f(z) dz +

∫

C3

f(z) dz .

But by the Cauchy Integral Formula,
∫

C1

f(z) dz =

∫

C1

z

(z − z2)(z − z3)

1

z − z1
dz = (2πi)

z1
(z1 − z2)(z1 − z3)

,

and by an identical argument
∫

C2

f(z) dz = (2πi)
z2

(z2 − z1)(z2 − z3)
and

∫

C3

f(z) dz = (2πi)
z3

(z3 − z1)(z3 − z2)
.

Putting these together, we get
∫

C

f(z) dz = (2πi)[
z1

(z1 − z2)(z1 − z3)
+

z2
(z2 − z1)(z2 − z3)

+
z3

(z3 − z1)(z3 − z2)
]

= (2πi)
z1(z2 − z3)

(z1 − z2)(z1 − z3)(z2 − z3)
+

−z2(z1 − z3)

(z1 − z12)(z1 − z3)(z2 − z3)
+

z3(z1 − z2)

(z1 − z2)(z1 − z3)(z2 − z3)
]

= (2πi)[
z1(z2 − z3)− z2(z1 − z3) + z3(z1 − z2)

(z1 − z2)(z1 − z3)(z2 − z3)
] .

But! z1(z2 − z3)− z2(z1 − z3) + z3(z1 − z2) = z1z2 − z1z3 − z2z1 + z2z3 + z3z1 − z3z2
= (z1z2 − z2z1) + (−z1z3 + z3z1) + (z2z3 − z3z2) = 0, so
∫

C

f(z) dz = 0 (!).

[Alternative solutions include computing as a sum of residues, or by noting that for any
of the roots zi of z

3+1, z3+1 = (z−zi)(z
2+ziz+z2i ) to simplify the residues/integrals,

or computing the residue at ∞, instead.]

4. If w = f(z) is analytic and non-constant on and inside of the simple closed curve
C and, for some constant K, |f(z)| = K for every point on C, show that there is a
point z0 inside of C where f(z0) = 0.

[ Hint: Suppose not! Then show that we can apply the Maximum Principle to both

f(z) and g(z) =
1

f(z)
and get ourselves into trouble! ]

Suppose that f(z) 6= 0 for every z on and inside of the curve C.

Then g(z) =
1

f(z)
is a quotient of analytic functions on and inside of C, and the

denominator is never zero there, so g(z) is analytic (and non-constant) on and inside
of C.

Also, on C, |g(z)| = 1

K
= L for every z.



But then the Maximum Modulus Theorem (the maximum of the modulus must occur
on the boundary of a domain), applied to f , tells us that |f(z)| ≤ K for every z on
and inside of C (and the inequality is strict (<) inside of C), while applied to g, it
tells us that |g(z)| ≤ L (with strict inequality inside of C).

But this second inequality, interpreted as a statement about f , says that |f(z)| ≥ K
for every z on and inside of C. So |f(z)| is constantly equal to K on and inside of
C. But from a result in class, this implies that f is constant, contradicting one of our
hypotheses. So it must be the case that f(z) = 0 somewhere on or inside of C.

[N.B: we could have also simply concluded that |f(z)| < K and |f(z)| > K inside of
C, which is ridiculous! So one of our hypotheses must be false.]

5. Show that if |z| = 1, then for any complex number b we have
∣

∣

∣

z + b

bz + 1

∣

∣

∣
= 1.

We can show this several ways; one somewhat short way is to note that, since |z| = 1,
we have

|z+ b| = |z + b| = |z+ b| = |z+ b| · |z| = |(z+ b)z| = |bz+ zz| = |bz+ |z|2| = |bz+1| ,

so
∣

∣

∣

z + b

bz + 1

∣

∣

∣
=

|z + b|
|bz + 1|

=
|z + b|
|z + b| = 1 .

6. Find the values of z =
√

1 +
√
i.

√
i =

√

eπi/2 = eπi/4 and e5πi/4, which in rectangular coordinates are
√
2/2+

√
2/2i

and
√
2/2 −

√
2/2i . So 1 +

√
i = (2 +

√
2)/2 +

√
2/2i and (2 +

√
2)/2 −

√
2/2i .

These both have modulus (1/2)
√

(2 +
√
2)2 + (

√
2)2 = (1/2)

√

8 + 4
√
2 =

√

2 +
√
2,

and argument, well, some number α (and −α). So the four values of
√

1 +
√
i are

±(2 +
√
2)1/4eiβ , where β = α/2 and −α/2.

7. Show that if f is an entire function and f(x + 2π) = f(x) for every real value of x,
then f(z + 2π) = f(z) for every complex value z. [Hint: what can you say about
g(z) = f(z + 2π)− f(z) ?]

The function g(z) = f(z+2π)−f(z) has the property that g(x) = f(x+2π)−f(x) = 0
for every real number x. g is also an entire function, since z 7→ z + 2π is analytic
everywhere, and the composition andd diffference of analytic functions is analytic.
But g then has zeros which are no isolated. This implies that g is constant near,
say z = 0. But since we can use a little circle around 0 to compute the coeffficients
of its Taylor series, which equals g everywhere, we have that g is zero everywhere.
Therefore, f(z) = f(z + 2π) for every z ∈ C.

8. Use residues to compute

∫

∞

0

dx

x6 + 1
.

We can evaluate this integral as the limit, as R → ∞ of (1/2)

∫ R

−R

dx

x6 + 1
(since the

integrand is an even function). This, in turn, can be thought of as ‘half’ of a contour
integral which travels from z = R to z = −R by the (upper) semicircle SR at radius



R. But |
∫

SR

1

z6 + 1
dz| = |

∫ π

0

1

(Reit)6 + 1
iReit dt| ≤

∫ π

0

| 1

(Reit)6 + 1
iReit| dt ≤

|intπ0
R

R6 − 1
dt =

Rπ

R6 − 1
→ 0 as R → ∞, so this will contribute nothing in the limit.

So the integral we want is the limit of the contour integral along the x-axis and then
along SR. This is a closed surve, and so we can compute the contour integral using
residues.

The singularities of f(z) =
1

z6 + 1
occur at the sixth roots of −1 = eiπ; there are six

of them, and three of them lie inside of the closed curve we’ve built, at z1 = eiπ/6,
z2 = eiπ/2 = i , and z3 = e5iπ/6. Each of these is a simple pole, and so their residues
can be computed by factoring z − zi out of the denomenator of f , and evaluating the
rest at z = zi. Doing this three times, for our three roots, and summing, will give us
the value of our contour integral (which won’t depend on R !), and so is equal to the
improper integal we seek.

How we compute these residues is a bit ugly; but if we focus on computing their sum,
we can streamline a bit. We have three roots z1, z2, z3 as above and, with the other
three roots, which happen to be −z1,−z2,−z3, we want

1

(z1 − z2)(z1 − z3)(z1 + z1)(z1 + z2)(z1 + z3)
+

1

(z2 − z1)(z2 − z3)(z2 + z1)(z2 + z + 2)(z2 + z3)
+

1

(z3 − z1)(z3 − z2)(z3 + z1)(z3 + z + 2)(z3 + z3)

=
1

(2z1)(z21 − z22)(z
2
1 − z23)

+
1

2z2(z22 − z21)(z
2
2 − z23)

+
1

2z3(z23 − z21)(z
2
3 − z22)

=
1

2z1z2z3(z
2
1 − z22)(z

2
1 − z23)(z

2
2 − z23)

(z2z3(z
2
2 − z23)− z1z3(z

2
1 − z23) + z1z2(z

2
1 − z22))

...and I am beginning to care less and less about the exact value... But let’s forge
ahead: z31 = eiπ/2 = i , z32 = i3 = −i, and z33 = e15iπ/6 = i . So (z2z3(z

2
2 − z23) −

z1z3(z
2
1 − z23) + z1z2(z

2
1 − z22)) = −iz3 − iz2 − iz3 + iz1 + iz2 + iz1 = 2i(z1 − z3) .

Nope, still don’t care.

9. Use residues to compute

∫

∞

0

x2dx

x4 + 1
.

As in the previous problem, the integrand is an even function, so we really calculate
∫

∞

0

x2dx

x4 + 1
= (1/2) lim

R→∞

∫ R

−R

x2dx

x4 + 1
, which we again treat as ‘half’ of a contour

integral, the other part being

∫

SR

z2

z4 + 1
dz.

As above, the integral

∫

SR

z2

z4 + 1
dz =

∫ π

0

((Reit)2

(Reit)4 + 1
iReit dt has modulus at most

∫ π

0

R2

R4 − 1
R dt =

R3π

R4 − 1
, which goes to 0 as R → ∞, so it will, again, play no role

in the value, in the limit.

If we compute the resulting contour (along the x-axis, and then alson SR) using

residues, the function f(z) = z2

z4+1
has four singularities, two of which, z1 = eiπ/4 and

z3 = e3iπ/4 lie inside of our chosen closed curve. [The other two roots are z1 and z3.]
These are again simple poles, and so we can compute



∫

CR

z2

z4 + 1
dz =

∫

CR

z2

(z2 + i)(z2 − i)
dz =

∫

C1

z2

(z2 + i)(z2 − i)
dz+

∫

C3

z2

(z2 + i)(z2 − i)
dz =

2πi(
z21

(z21 + i)(z1 − z1)
+

z23
(z23 − i)(z3 − z3)

.

But! z1 − z1 =
√
2i = z3 − z3, z

2
1 = i and z23 = −i , and so

∫

CR

z2

z4 + 1
dz = 2πi(

i

(i+ i)(
√
2i)

+
−i

(−i− i)(
√
2i)

= 2πi(2
1

2
√
2i

) = π
√
2.

So!

∫

∞

0

x2dx

x4 + 1
= (1/2) lim

R→∞

∫ R

−R

x2dx

x4 + 1
= (1/2) lim

R→∞

π
√
2 =

π√
2
.

10. Find the integral of f(z) =
z

1 + z
over the line segment γ(t) = t, 0 ≤ t ≤ 1.

From the parametrization we have γ′(t) = 1 and so

∫

C

z

1 + z
dz =

∫ 1

0

t

1 + t
1 dt =

∫ 1

0

t

1 + t
dt =

∫ 1

0

1− 1

1 + t
dt− t− ln(1 + t)|10 = 1− ln 2.

[This problem would have been more ‘interesting’ if the curve had not been in the real
line, so that complex conjugation would have actually changed the function...!]

11. Determine, for the branch of the analytic function f(z) = z1/2 with domain all z
except for {x + 0i : x ≤ 0 and with f(1) = 1, whether or not f(z1z2) = f(z1)f(z2)
hold for every z1, z2 in the domain of f . Is there a different choice of branch cut which
would change the answer?

The short answer is no, and no.

The point is that the argument of z1/2 is half of the argument of z, which for the
branch chosen, is taken between −π and π. So two numbers zi with argument close
to, but less than, π will have f(zi) have argument close to π/2, and so their product
will have argument close to pi. But z1z2 will have argument close to, but less than,
2π, which for f we will have to interpret, instead, as negative and small. So f(z1z2)
will have argument half that size, that is, small and negative. If you work this out
with specific numbers, what you find is that f(z1)f(z2) = −f(z1z2), and so is not
equal to f(z1z2). And we can make this problem happen with any branch of z1/2 we
might choose; you ‘just’ need to find two numbers on one side of the branch (i.e., on
one side of the line determined by the branch ray) whose product is on the other side,
and you can recreate the scenario above.

12. Write the function f(z) =
z

z2 − 4z + 3
as a Laurent series which converges for 1 <

|z| < 3, and as (another!) Laurent series which converges for 3 < |z| < ∞.

We have f(z) =
z

(z − 1)(z − 3)
, which, using partial fractions, is equal to

3

2

1

z − 3
−

1

2

1

z − 1
. We can write Laurent series for each piece, that works in each ring-shaped

domain, and then add them together to get the needed series.



For
1

z − 3
, we can write

1

z − 3
= − 1

3− z
= −1

3

1

1− (z/3)
= −1

3

∞
∑

n=0

(z/3)n =

∞
∑

n=0

− 1

3n+1
zn,

which converges for |z/3| < 1, i.e., |z| < 3. For |z| > 3, that is, |z/3| > 1, that is,

|3/z| < 1, we substitute w = 3/z into
1

1− w
=

∞
∑

n=0

wn to get

∞
∑

n=0

(3/z)n =

∞
∑

n=0

3nz−n =

1

1− (3/z)
=

z

z − 3
, so

1

z − 3
=

∞
∑

n=0

3nz−n−1, which is a Laurent series which converges

for |z| > 3.

for
1

z − 1
, we will only need the Laurent series which converges for |z| > 1, which

we will use to obtain both series. This, again, requires substituting w = 1/z into

1

1− w
=

∞
∑

n=0

wn, to obtain
∞
∑

n=0

z−n =
1

1− (1/z)
=

z

z − 1
, so

1

z − 1
=

∞
∑

n=0

z−n−1,

which converges for |z| > 1.

Therefore, for 1 < |z| < 3, we have f(z) =
3

2

1

z − 3
− 1

2

1

z − 1
=

3

2

∞
∑

n=0

− 1

3n+1
zn −

1

2

∞
∑

n=0

z−n−1,

while for 3 < |z|, we have f(z) =
3

2

1

z − 3
− 1

2

1

z − 1
=

3

2

∞
∑

n=0

3nz−n−1 − 1

2

∞
∑

n=0

z−n−1 .

The diligent student can express each of these as a single sum...

13. Find the residue at z = 1 for the functions f(z) =
z

z2 − 1
and g(z) =

sin(2πz)

(z − 1)2
.

These are probably mostly quickly done using the Cauchy Integral Formula. For

f(z) =
z

z2 − 1
=

z
z+1

z − 1
, the residue is equal to

1

2πi

∫

C

z
z+1

z − 1
dz =

z

z + 1
|z=1 =

1

2
. [C

is a small curve around z = 1. It would be instructive to find this by instead writing
f(z) as a Laurent series in (z − 1) ...]

For g(z) =
sin(2πz)

(z − 1)2
, the residue is equal to

1

2πi

∫

C

sin(2πz)

(z − 1)2
dz =

d

dz
(sin(2πz))|z=1 =

2π cos(2πz)|z=1 = 2π cos(2π) = 2π.

14. Let C be any simple closed curve in the plane, oriented counterclockwise, and for z
not on C, define

f(z) =

∫

C

s3 + 2s

(s− z)3
ds .

Show that for every z inside of C, f(z) = 6πiz, while for every z outside of C, f(z) = 0.

If z is outside of C, then g(s) =
s3 + 2s

(s− z)3
is analytic on an inside of C, since it

is the quotient of analytic functions. Therefore, by the Cauchy-Goursat Theorem,
∫

g(s) ds = 0.

If z is inside of C, then setting g(s) = s3 + 2s, we have



f(z) =

∫

C

s3 + 2s

(s− z)3
ds =

∫

C

g(s)

s− z)3
ds = 2πi

g′′(z)

2!
. Since g′′(s) = 6s, we have

f(z) = 2πi(6z/2) = 6πiz.

15. Show that if

f(z) = f(x+ yi) = u(x, y) + iv(x, y) and g(z) = g(x+ yi) = p(x, y) + iq(x, y)

both satisfy the Cauchy-Riemann equations at z = 0, then h(z) = f(z)g(z) also
satisfies the CR-equations at z = 0.

[There is nothing at all special about 0; it was chosen for notational convenience.]

The real part of fg is U = up − vq, and the imaginary part of fg is V = vp + uq .
So we wish to show that Ux = Vy and Uy = −Vx. But since we know that ux = vy,
uy = −vx, px = qy, and py = −qx, we find that

Ux = (up− vq)x = (up)x− (vq)x = (uxp+upx)− (vxq+ vqx) = (vyp+uqy)− (−uyq+
v(−py)) = (uqy + uyp) + (vyp+ pyv) = (uq)y + (vp)y = (uq + vp)y = Vy

...and the other CR equation is similar...

16. Show that setting z = eit, we can rewrite
cos 5t

cos t
as z4 − z2 + 1− z−2 + z−4 .

Use this to find the value of

∫ 2π

0

cos 5t

cos t
dt by converting to an integral over the

unit circle C(t) = eit, 0 ≤ t ≤ 2π.

We know that cos t = (1/2)(ei t+e−i t) = (1/2)(z+z−1), and so cos(5t) = (1/2)(ei5t+

e−i5t) = (1/2)(z5 + z−5). Therefore,

cos(5t)

cos t
=

(1/2)(z5 + z−5)

(1/2)(z + z−1)
=

z5 + z−5

z + z−1
=

z−5

z−1

z10 + 1

z2 + 1
= z−4(z8 − z6 + z4 − z2 +1) =

z4 − z2 + 1− z−2 + z−4

by polynomial long division. From this, we can compute:

(*) =

∫ 2π

0

cos(5t)

cos t
dt =

∫ 2π

0

(eit)4 − (eit)2 + 1− (eit)−2 + (eit)−4 dt =
1

i

∫ 2π

0

(eit)3 −

(eit)1 + (eit)−1 − (eit)−3 + (eit)−5 (ieit) dt

This is the integral that results from a contour integral, along the unit circle C, with
parametrization z = eit, for the function f(z) = i(z3 − z + z−1 − z−3 + z−5). So:

(*) =

∫

C

i(z3 − z + z−1 − z−3 + z−5) dz = 2πi(i) = −2π, since by the Residue

Theorem, the integral is equal to 2πi times the coefficient of z−1 in the Laurent series
representation of the function, since the function is analytic on and inside of X except
at z = 0.

17. Find the Laurent series expansion of the function f(z) =
z3

(z − 1)2
centered at z = 0,

valid for 1 < |z| < ∞.



1 < |z| means |1/z| < 1, and so then using the geometric series, we have

∞
∑

n=0

(1/z)n =

1/(1−(1/z)) = 1/((z−1)/z) = z/(z−1) so (z−1)−1 = 1/(z−1) = (1/z)
∞
∑

n=0

(1/z)n =

−1
∑

n=∞

zn, valid for |z| > 1 . Differentiating this term by term we have

−(z − 1)−2 =

−1
∑

n=∞

nzn−1, and so f(z) =
z3

(z − 1)2
= z3

−1
∑

n=∞

−nzn−1 =

−1
∑

n=∞

nzn+2 =

1
∑

n=∞

−(n− 2)zn =

1
∑

n=∞

(2− n)zn, which is, again, valid for |z| > 1 .

18. Find the value of

∫

C

dz

(z2 + 1)(2z + 5)
,

where C is the boundary of the ‘diamond’ S = {(x + iy : |x| + |y| ≤ 2}, traversed
counterclockwise (see figure below).

2

-2

2

-2

The singularities of the integrand occur at the roots of the denomenator, namely
z = i , z = −i , and z = −5/2. Of these, the first two lie inside of C. So we can

compute the integral as the sum of the integral of f(z) =
1

(z2 + 1)(2z + 5)
around

small circles surrounding i and −i , which, in turn, we can compute by the Cauchy
Integral Formula. From this we get:
∫

C

1

(z2 + 1)(2z + 5)
dz = (2πi)(

1

(z + i)(2z + 5)

∣

∣

∣

z=i
+

1

(z − i)(2z + 5)

∣

∣

∣

z=−i
) = 2πi(

1

(2i)(2i + 5)
+

1

(−2i)(−2i + 5)
) = π(

1

2i + 5
+

1

2i − 5
) =

4πi

−22 − 52
=

−4πi

29
.

An alternate approach would be to use the singularities outside of C, namely −5/2
and ∞. The residue at ∞, because the denomenator of the function is cubic, will be
0;

1

z2
f(

1

z
) =

1

z2( 1
z2 + 1)( 2

z
+ 5

=
z

(1 + z2)(2 + 5z)
has a removable singularity at z = 0.



So the integral we want is the negative of the residue of f at z = −5/2, that is,

−
∫

C

1
(z2+1)(2)

z + (5/2)
dz = −2πi

1

((−5/2)2 + 1)(2)
= −2πi

2

29
=

−4πi

29
.

Some potentially useful formulas

sin(z) =
1

2i
(eiz − e−iz)

cos(z) =
1

2
(eiz + e−iz)

arcsin(z) = −i log(iz +
√
1− z2)

arctan z =
i

2
log

(

i − z

i + z

)

1

1− z
=

∞
∑

n=0

zn , for |z| < 1

1

(1− z)2
=

d

dz

( 1

1− z

)

d

dz

(

log(1− z)
)

=
−1

1− z

sin z =

∞
∑

n=0

(−1)n

(2n+ 1)!
zn

cos z =

∞
∑

n=0

(−1)n

(2n)!
zn

sinh z =
∞
∑

n=0

1

(2n+ 1)!
zn

cosh z =

∞
∑

n=0

1

(2n)!
zn

1

z2 + 1
=

∞
∑

n=0

(−1)nz2n , for |z| < 1


