Math 423/823 Final Exam Practice Problems: Solutions

[Note: These solutions were generated without much effort at checking, so the actual
numbers could be off, but the essential process should be correct. Use them mostly to
judge whether you have followed the process correctly... And if you do think some of the
answers are wrong, let your instructor know!]

1. For z = x + yi, does 17 always equal 1 ?

By definition, a® = e*1°8(*), So 17 = e*!e() But log(1) = In|1| + iarg(l) =
0+ 1(0+2k7m) = 2kmi, depending on which branch of arg(z) we choose. So 17 = 62’“”2
which, depending on our choice of k, need not equal 1. For k =0, 17 = % =0 =1,

but for, e.g., k=1, 1% = 27 = 6_2” # 1. So depending upon which value of log(1)
that we choose, 17 need not equal 1.

Shorter, pithier solution: 1'/2 should be allowed to be —1, under any reasonable
definition of exponentials, so, no.

2. Find the value of/ f(2) dz, where f(z) = f(x +iy) = 2% — iy* and
C
C(t)=¢e for 0 <t <.

Using the parametrization given, as C(t) = e = cos(t) + isin(t), we have C’(t) =
—sin(t) + i cos(t), so

/f dz—/ (cos®t — isin®t)(—sint + i cost) dt:/ —sintcos®t + icost +
0

isin®t — i costsin®t dt = / —sintcos?t 4 costsin®t + i cost(1 —sin® t) + i sint(1 —
cos®t) dt = [(1/3)cos®t + (1/3) sin®t 4+ i(t — (1/3)sin®t) — i(t — (1/3) cos® t)]|7 =
[(=1/3) + 0 + i(m = 0) — (7 + (1/3))] = [(1/3) + 0 + (0 — 0) —i(0 — (1/3))] =
[=1/3 = (1/3)i] = [1/3+ (1/3)i] = =2/3 — (2/3)i

3. Find the integral of the function f(z) = around the simple closed curve

z
23 +1
C(t) = [3 + sin(bt)] cost + i[3 + sin(2¢)]sint , 0 < ¢ < 2w. [See figure below.]

f(z) is analytic except where the denominator is zero, i.e., 22 = —1 = €'™,



so except for
z=¢"B =z, z2=¢ =e" =—1=2zy,and z =e¢
In part, 22 + 1= (2 — 21)(2 — 22)(2 — 23) .

3im/3 5im/3 _ p—im/3

= Z3.

We note that each of these three points lie inside of the curve C; C travels around
the origin at a distance of between 3 — 1 = 2 and 3 + 1 = 4, so encircles these three
points, which all sit at a distance of 1 from the origin.

If we draw small circles C; around each of the points z;, in the counterclockwise
direction, then from Cauchy’s Theorem we know that

/ Feyde= [ e+ [ fe)det [ () de.
c & Cs Cs

But by the Cauchy Integral Formula,
z 1 , z1
z) dz = dz = (2mi ,
le( ) /Cl (z—22)(z—23) 2 — 21 ( )(21 — 29)(21 — 23)
and by an identical argument

£(2) dz = (2m0) =2
Cs

<3

=2 (s — ) and . (z) dz = (2mi) o))

Putting these together, we get

— (97i 21 22 Z3
/o fz) dz = (2 )[(21 — 22)(21 — 23) - (22 — 21)(22 — 23) - (23 — 21)(23 — 22)
21 (22 — 23) —22(21 — 23) 23(21 — 22)

= (2mi)

(2’1 — ZQ)(Zl — Zg)(ZQ — 2’3) (2’1 — 212>(2’1 — 2’3)(22 — Zg) (21 — 2’2)(21 — Zg)(ZQ — 2’3)
21 (22 — 23) — 22(21 — 23) + 23(21 — 22)

= (2mi)[ ]

(21 — 22)(21 — 23)(22 — 23)

But! z1(22 — 23) — 22(21 — 23) + 23(21 — 22) = 2122 — 2123 — 2221 + 2223 + 2321 — 2322

= (2120 — 2021) + (—2123 + 2321) + (2223 — 2322) = 0, so

/ f(z) dz=0 ().
c

[Alternative solutions include computing as a sum of residues, or by noting that for any
of the roots z; of 23+1, 23+1 = (2—2;) (2% +2;2+2?) to simplify the residues/integrals,
or computing the residue at oo, instead.]

. If w = f(2) is analytic and non-constant on and inside of the simple closed curve
C' and, for some constant K, |f(z)| = K for every point on C, show that there is a
point zq inside of C' where f(zp) = 0.

[ Hint: Suppose not! Then show that we can apply the Maximum Principle to both

f(2) and g(z) = —— and get ourselves into trouble! |

f(z)
Suppose that f(z) # 0 for every z on and inside of the curve C.

1
Then ¢g(z) = —— is a quotient of analytic functions on and inside of C, and the
f(2)

denominator is never zero there, so ¢g(z) is analytic (and non-constant) on and inside

of C.
1

Also, on C, |g(2)| = T = L for every z.



But then the Maximum Modulus Theorem (the maximum of the modulus must occur
on the boundary of a domain), applied to f, tells us that |f(z)| < K for every z on
and inside of C' (and the inequality is strict (<) inside of C'), while applied to g, it
tells us that |g(z)| < L (with strict inequality inside of C).

But this second inequality, interpreted as a statement about f, says that |f(z)| > K
for every z on and inside of C. So |f(z)| is constantly equal to K on and inside of
C. But from a result in class, this implies that f is constant, contradicting one of our
hypotheses. So it must be the case that f(z) = 0 somewhere on or inside of C.

[N.B: we could have also simply concluded that |f(z)| < K and |f(z)| > K inside of
C', which is ridiculous! So one of our hypotheses must be false.]

b
. Show that if |z| = 1, then for any complex number b we have ’_Z + ’ =1.

bz +1

We can show this several ways; one somewhat short way is to note that, since |z| = 1,
we have

|z 40| =

Z2+ b =|Z4+b =[Z+b|-|z| = |(Z+b)z| = |bz +Zz| = |bz + |2|?*| = |bz + 1] ,
z—i—b‘_ lz4+b]  |z4+b
bz+ 11 pbz+1] |2+

SO‘

. Find the values of z = V1 + V1.

Vi = Vert/2 = em/4 and 65“i/4, which in rectangular coordinates are v/2/2 + v/2/2i
and v2/2 — v2/2i. So 1+ Vi = (2 ++2)/2 +V2/2i and (2 + v2)/2 — V/2/2i.
These both have modulus (1/2)\/(2 +V2)2+ (V2)2 = (1/2)V8 +4v2 =2+ 2,

and argument, well, some number « (and —a). So the four values of V1 + Vi are
+(2 + v/2)/%eP, where f = /2 and —a/2.

. Show that if f is an entire function and f(z + 27) = f(z) for every real value of z,
then f(z + 27) = f(z) for every complex value z. [Hint: what can you say about

9(2) = f(z+2m) = f(2) 7]

The function g(z) = f(2+27)— f(z) has the property that g(z) = f(z+27)—f(x) =0
for every real number x. g is also an entire function, since z — z + 27 is analytic
everywhere, and the composition andd diffference of analytic functions is analytic.
But ¢ then has zeros which are no isolated. This implies that ¢ is constant near,
say z = 0. But since we can use a little circle around 0 to compute the coeffficients
of its Taylor series, which equals g everywhere, we have that g is zero everywhere.
Therefore, f(z) = f(z + 2m) for every z € C.

dx
641"

oo
. Use residues to compute /
0

R
d
We can evaluate this integral as the limit, as R — oo of (1/2)/ % (since the
_RZT

integrand is an even function). This, in turn, can be thought of as ‘half’ of a contour
integral which travels from z = R to z = —R by the (upper) semicircle S at radius



s 1 )
_ Zt - 1t
R. But \/ dz| = |/ 7]__{6” 1 dt| < /0 \7(Reit)6+1zRe | dt <

— 0 as R — oo, so this will contribute nothing in the limit.

intg dt =

fing R6 RG —1
So the mtegral we want is the limit of the contour integral along the z-axis and then
along Si. This is a closed surve, and so we can compute the contour integral using
residues.

The singularities of f(z) = occur at the sixth roots of —1 = €'™; there are six

26 +1
of them, and three of them lie inside of the closed curve we’ve built, at z; = €'™/6,
2o = €™/2 = j and z3 = €5"/6, Each of these is a simple pole, and so their residues

can be computed by factoring z — z; out of the denomenator of f, and evaluating the
rest at z = z;. Doing this three times, for our three roots, and summing, will give us
the value of our contour integral (which won’t depend on R !), and so is equal to the
improper integal we seek.

How we compute these residues is a bit ugly; but if we focus on computing their sum,
we can streamline a bit. We have three roots z1, 22, z3 as above and, with the other

three roots, which happen to be —z1, —z5, —z3, we want
1 1

Gr— 21— =)o+ 20 (14 220 ) ()=t o)t et (et )

(z3 — 21)(23 — 22) (23 + 21) (23 + 2 + 2) (23 + 23)
1 1 1

(221) (27 — Z%)(Z%l— 73)  2%(23 —21)(23 — 23)  22(28 — 21)(23 — 23)
_ 2 2y _ 2.2 2 .2
e R CETCET) (z223(25 — 25) — z123(2] — 25) + z122(2] — 23))
..and I am beginning to care less and less about the exact value... But let’s forge

ahead 2} =€/ =i, 23 =% = —i, and 23 = €!'%7/0 = 4. So (2223(25 — 23) —
z123(22 — 22) + zlzg(zf —22)) = —izz — izg — d23 + iz + izg + 21 = 2i(z1 — 23) .

Nope, still don’t care.

x2dx

xt+1 7

As in the previous problem, the integrand is an even function, so we really calculate

0 24 R 24
/ % = (1/2) Rlim %, which we again treat as ‘half’ of a contour
T —x J_Rp T

oo
. Use residues to compute /
0

2
dz.

int 1, the oth t bei
integral, the other par elng/SRz4+1

: a TR
As above, the integral 7] dz = — 1 tRe’ dt has modulus at most
sp 24 +1 o (Rei)* 41

T R? R37
/0 i 1R dt = T which goes to 0 as R — oo, so it will, again, play no role
in the value, in the limit.

If we compute the resulting contour (along the z-axis, and then alson Sg) using

residues, the function f(z) = Zf—il has four singularities, two of which, z; = e!"/* and

z3 = €37/4 lie inside of our chosen closed curve. [The other two roots are z7 and Z3.]
These are again simple poles, and so we can compute



10.

11.

12.

2mi( 4 + %
(2 +i)(z1 —71) (23 —i)(2z3 —7Z3)
But! 21 —zZ1 = V2i = 25 — 73, 22 =i and 25 = —i, and so
22 i —i 1
dz = 271 + =2mi(2——) = mV2.
/cR zt+1 ((z’+i)(\/§z‘) (—i —1)(v/20) ( 2\/§¢>

> a:de R xle, .
| — . rrar ] o

Find the integral of f(z) =

z
— over the line segment ~(t) =¢, 0 <t < 1.
Z

1
t
From the parametrization we have 7/(f) = 1 and so / Z_ dz = —— 1dt =
01+Z 0 1+t
1
1
—dt 1——dt—t—l 1+t)i=1-1In2.
/ 1+t /O 1+t a1 +1)lo !

[This problem would have been more ‘interesting’ if the curve had not been in the real
hne so that complex conjugation would have actually changed the function...!]

Determine, for the branch of the analytic function f(z) = 2z'/? with domain all z
except for {z 4+ 07 : < 0 and with f(1) = 1, whether or not f(z122) = f(z1)f(22)
hold for every z7, zo in the domain of f. Is there a different choice of branch cut which
would change the answer?

The short answer is no, and no.

The point is that the argument of z'/2 is half of the argument of z, which for the
branch chosen, is taken between —7 and 7. So two numbers z; with argument close
to, but less than, = will have f(z;) have argument close to 7/2, and so their product
will have argument close to pi. But z12z, will have argument close to, but less than,
27, which for f we will have to interpret, instead, as negative and small. So f(z122)
will have argument half that size, that is, small and negative. If you work this out
with specific numbers, what you find is that f(z1)f(z2) = —f(2122), and so is not
equal to f(z122). And we can make this problem happen with any branch of z'/? we
might choose; you ‘just’ need to find two numbers on one side of the branch (i.e., on
one side of the line determined by the branch ray) whose product is on the other side,
and you can recreate the scenario above.

z
Write the function f(z) = ———— as a Laurent series which converges for 1 <
22 —4z+3

|z| < 3, and as (another!) Laurent series which converges for 3 < |z] < oo.

z 3 1
, which, using partial fractions, is equal to ——— —
(z—1)(z—3) 22-3

. We can write Laurent series for each piece, that works in each ring-shaped

We have f(z) =

1 1

22-1
domain, and then add them together to get the needed series.




13.

14.

oo o0

1 1 1 1 1 1

1 . n
For FB,WGC&IlWI'ltGZ_B :_3—2 = BW —51;)(2/3) _Z 3n—|—1
which converges for |z/3| < 1, i.e., |z| < 3. For |z| > 3, that is, |z/3| > 1 that is,

—Zw togetz 3/2)" 23” =
n=0

13/2] < 1, we substitute w = 3/z 111t0

1
1= (3/2) = i 3 SO po i Z 3"z~ "~ which is a Laurent series which converges
for |z] > 3.
for T We will only need the Laurent series which converges for |z| > 1, which

Z —_—
we Will use to obtain both series This, again, requires substituting w = 1/z into

n 1 z 1 = —n—1
Zw toobtamZz :1_ (i/2) 2_1,802_1:;,2 ,

which eonverges for |z| > 1.

31 11 3em 1
Therefore, for 1 < |z] < 3, we have f(z) = 5,3 5,.1° 5;—@2" —
1 - —n—1
2 >
n=0
while for 3 < |z|, we have f(z) = 3 1 = — ZS” -1 1 iz‘”_l
’ 22-3 2 z— 1 2 &~ ’
The diligent student can express each of these as a s1ngle sum...
Find the residue at z 1 for the functions £(2) = —>— and g(z) = S72)
ind the residue at z = 1 for the functions f(z) = and g(2) = ———=
22 -1 g (z—1)2
These are probably mostly quickly done using the Cauchy Integral Formula. For
1 : 1
flz) = ZQZ_ L= zz— T the residue is equal to i /., ;L_ll dz = Zj_1|z:1 =3 [C

is a small curve around z = 1. It would be instructive to find this by instead writing
f(z) as a Laurent series in (z — 1) ...]

_ sin(27z) 1 /sin(27rz) J
C

EEEAT

For g(z) = G2 , the residue is equal to 5

27 cos(272)| =1 = 2w cos(2m) = 2.

sin(272))|,=1 =

Let C' be any simple closed curve in the plane, oriented counterclockwise, and for z

not on C, define
s3 + 2s
= —— ds .
f(2) /c<s—z>3 ’

Show that for every z inside of C, f(z) = 6miz, while for every z outside of C', f(z) = 0.

3
5° + 2s
If z is outside of C, then g(s) = L)g is analytic on an inside of C, since it
5— %

is the quotient of analytic functions. Therefore, by the Cauchy-Goursat Theorem,
[ g(s) ds=0.
If 2 is inside of C, then setting g(s) = s3 + 2s, we have

’I’L

Y



15.

16.

17.

3 "
flz) = /C% ds = /C% ds = 27ri92(!2). Since ¢”(s) = 6s, we have

f(z) =27mi(62/2) = 6miz.

Show that if
f(z) = f(x+yi) = u(z,y) +iv(r,y) and g(2) = g(x + yi) = p(x,y) +iq(x,y)

both satisfy the Cauchy-Riemann equations at z = 0, then h(z) = f(2)g(z) also
satisfies the CR-equations at z = 0.

[There is nothing at all special about 0; it was chosen for notational convenience.]
The real part of fg is U = up — vq, and the imaginary part of fg is V = vp + ugq .

So we wish to show that U, = V,, and U, = —V,. But since we know that u, = v,
Uy = —Vz, Pz = Gy, and p, = —q;, we find that

Uy = (up—vq)z = (up)z — (vq)z = (uap +upy) — (V2q +v¢z) = (vyp+ugy) — (—uyqg+
v(=py)) = (ugy + uyp) + (vyp + pyv) = (uq)y + (vp)y = (uq +vp), =V,
...and the other CR equation is similar...

5t
cos as 2t — 2241 —224,7%.

Show that setting z = e'!, we can rewrite
cost

cos bt

27
Use this to find the value of / dt by converting to an integral over the
0

unit circle C(t) = e, 0 <t < 2.

cost

We know that cost = (1/2) (" +e= ) = (1/2)(2+2"1), and so cos(5t) = (1/2)(e?® +
e~ ¥5%) = (1/2)(2° + 27°). Therefore,

cos(5t) _ (1/2)(z°+27°) 2 +20 202041 I N S S

cost  (1/2)(z+2z71) 242zl 27l 241
R i R

by polynomial long division. From this, we can compute:

2 2 27
(*) _ /0 COS(5t) dt = / (eit)4 . (eit)2 41— (eit>—2 + (eit)—4 dt = 1/0 (eit>3 o

. ~cost 0o . 1
(ezt)l + (ezt>—1 . (ezt>—3 + (ezt>—5 (Z'ezt> dt
This is the integral that results from a contour integral, along the unit circle C', with
parametrization z = e, for the function f(z) = i(z3 — 2+ 27t — 273 4+ 27%). So:

(*) = / i(22 — 24 271 — 273 + 27°) dz = 27i(i) = —2m, since by the Residue
c

Theorem, the integral is equal to 27 times the coefficient of 2! in the Laurent series
representation of the function, since the function is analytic on and inside of X except
at z = 0.

Find the Laurent series expansion of the function f(z) = centered at z = 0,

-1

valid for 1 < |z| < oo.



oo

1 < |z| means |1/z| < 1, and so then using the geometric series, we have Z(l/z)” =

n=0
00

1/(1=(1/2) =1/((z=1)/2) = 2/(z=1) s0 (z = 1) 7' = 1/(z=1) = (1/2) Y _(1/2)" =

n=0
—1

Z 2", valid for |z| > 1 . Differentiating this term by term we have

n=oo

—1 3 —1 —1
—(z—1)"%= Z nz""!, and so f(z) = e i I =23 Z —nz"l = Z nz"t? =

1 1
Z —(n—2)z" = Z (2 —n)z", which is, again, valid for |z| > 1.

n=oo n=oo

dz
(22 +1)(22+5)
where C' is the boundary of the ‘diamond’ S = {(z + iy : |z| + |y| < 2}, traversed
counterclockwise (see figure below).

. Find the value of /
C

-2

The singularities of the integrand occur at the roots of the denomenator, namely

z =14, z = —i, and z = —5/2. Of these, the first two lie inside of C. So we can

1
compute the integral as the sum of the integral of f(z) = Z+1)2: 1 5) around
small circles surrounding ¢ and —i, which, in turn, we can compute by the Cauchy

Integral Formula. From this we get:

1 | 1 1 1
/O Erne s TN ) e @ 5 i) T T @i e
1 1 1 47y —471

(—24)(—2i +5)) st s T e T
An alternate approach would be to use the singularities outside of C, namely —5/2
and oco. The residue at oo, because the denomenator of the function is cubic, will be

Loy ! i h ble singularity at z = 0
— —) = = as a removaple singulari al 2 = U.
20 T 2L T D)2 +5  (1+22)(2+52) sHianty




So the integral we want is the negative of the residue of f at z = —5/2, that is,

(22 1)( ) 1 2 479
z2241)(2 . . -

— _ d = —2 s —2 _— = .
/C 2+ (5/2) =522+ 1)(2) ™99 T 29

Some potentially useful formulas

1 .
cos(z) = 5(6” +e %)

arcsin(z) = —ilog(iz + V1 — 22)

¢ il (z—z)
arctan z = — 10
2 % \it2

1 oo
—:Zz”,for\z\<1
1—-2 —

d -1
dz( og( ?) 1—2
sinz = ZO nt 1)
- (_1>n n
Ccosz = Z
|
n=0 (2n>
sinh z = i 1 2"
— (2n+1)!
coshz = i LY
= (2n)!
1 S n_2n
o :Z(—l) 2" for |z < 1



