Math 423/823 Exercise Set 2

Due Thursday, Feb. 1

6. [BC#1.9.8] Show that for complex numbers z_1 and z_2 we have $|z_1| = |z_2|$ if and only if there are complex numbers c_1 and c_2 so that $z_1 = c_1c_2$ and $z_2 = c_1\overline{c_2}$.

[N.B.: For \Leftarrow , a previous problem helps! For \Rightarrow , show that if $|z_1| = |z_2|$ then we can write $z_1/z_2 = e^{i\theta}$, and use this to construct an appropriate $c_2 = e^{i\psi}$, by looking at what z_1/z_2 would be if the conclusion were true! Or you can unravel the hints provided in the text...]

7. [BC#2.14.3] If z = x + yi and $f(z) = (x^2 - y^2 - 2y) + (2x - 2xy)i$, use the formulas $x = \frac{z + \overline{z}}{2}$ and $y = \frac{z - \overline{z}}{2i}$

to write f(z) in terms of z (and \overline{z}) and simplify the result.

8. [BC#2.14.8] Sketch the regions onto which the sector $A = \{z = re^{i\theta} : 0 < r < 1, 0 < \theta < \pi/4\}$

of the complex plane is mapped by the functions (a) $w = z^2$ (b) $w = z^3$ (c) $w = z^4$

9. Show that the reciprocal function, f(z) = 1/z, maps the (punctured) disk $D = \{z : |z - 1| < 2 \text{ and } z \neq 0\}$

onto the region that lies <u>outside</u> of the circle $\{w : |w + 1/3| = 2/3\}$.

[N.B. Essentially, this is asking you to show that |z - 1| < 2 (and $z \neq 0$) $\Leftrightarrow |1/z + 1/3| > 2/3$. The quickest way that your instructor found to do this was to start with z = x + yi and $|1/z + 1/3|^2 > (2/3)^2$, clear the denomenator and continue to simplify the expression until he was staring at $|z - 1|^2 < 4$...]