Math 445 Number Theory

Introduction/Review of concepts from abstract algebra

An integer p is prime if whenever $p = ab$ with $a, b \in \mathbb{Z}$, either $a = \pm n$ or $b = \pm n$.

[For sanity's sake, we will take the position that primes should also be ≥ 2 .]

- **Fundamental Theorem of Arithmetic:** Every integer $n \geq 2$ can be expressed as a product of primes; $n = p_1 \cdot \cdots \cdot p_k$.
- If we insist that the primes are written in increasing order, $p_1 \leq \ldots \leq p_k$, then this representation is unique.
- **The Division Algorithm:** For any integers $n \geq 0$ and $m > 0$, there are *unique* integers q and r with $n = mq + r$ and $0 \le r \le m - 1$.
- [Note: this is also true for any integers n, m with $m \neq 0$, although you need to replace " $m - 1$ " with " $|m - 1|$ " .]

The basic idea: keep repeatedly subtracting m from n until what's left is less than m.

- Notation: $b|a = "b$ divides $a" = "b$ is a divisor of $a" = "a$ is a multiple of b", means $a = bk$ for some integer k.
- If $b|a$ and $a \neq 0$, then $|b| \leq |a|$.
- If a|b and b|c, then $a|c$
- If $a|c$ and $b|d$, then $ab|cd$
- If p is prime and $p|ab$, then either $p|a$ or $p|b$

Notation: $(a, b) = \gcd(a, b) = \text{greatest common divisor of } a \text{ and } b$ Different, equivalent, formulations for $d = (a, b)$:

- (1) d|a and d|b, and if c|a and c|b, then $c \leq d$.
- (2) d is the smallest positive number that can be written as $d = ax + by$ with $a, b \in \mathbb{Z}$.
- (3) d/a and d/b , and if c/a and c/b , then c/d .
- (4) d is the only divisor of a and b that can be expressed as $d = ax + by$ with $a, b \in \mathbb{Z}$.
- If $c|a$ and $c|b$, then $c|(a, b)$
- If $c|ab$ and $(c, a) = 1$, then $c|b$
- If $a|c$ and $b|c$, and $(a, b) = 1$, then $ab|c$
- If $a = bq + r$, then $(a, b) = (b, r)$
- **Euclidean Algorithm:** This last fact gives us a way to compute (a,b) , using the division algorithm:
- Starting with $a>b$, compute $a = bq_1 + r_1$, so $(a, b) = (b, r_1)$. Then compute $b = r_1q_2 + r_2$, and repeat: $r_{i-1} = r_iq_{i+1}+r_{i+1}$. Continue until $r_{n+1} = 0$, then $(a, b) = (b, r_1) = (r_1, r_2) =$ $\ldots = (r_n, r_{n+1}) = (r_n, 0) = r_n$.
- Since $b>r_1 > r_2 > r_3 > ...$, this process must end, by well-orderedrness.
- We can reverse these calculations to recover $(a, b) = ax + by$, by rewriting each equation in our algorithm as $r_{i+1} = r_{i-1} - r_iq_{i+1}$, and then repeatedly substituting the higher equations into the lowest one, in turn, working up through the list of equations.

Congruence modulo n : Notation: $a \equiv b \pmod{n}$ (also written $a \equiv b$) means $n|(b-a)$

Equivalently: the division algorithm will give the same remainder for a and b when you divide by n

Congruence mod n is an *equivalence relation*

The *congruence class* of a mod n is the collection of all integers congruent mod n to a: $[a]_n = \{b \in \mathbb{Z} : a \equiv b\} = \{b \in \mathbb{Z} : n|(b-a)\}$

Fermat's Little Theorem. If p is prime and $(a, p) = 1$, then $a^{p-1} \equiv 1$

Because: $(a \cdot 1)(a \cdot 2)(a \cdot 3) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdot 3 \cdots (p-1)$, and $(1 \cdot 2 \cdot 3 \cdots (p-1), p) = 1$ ^p . Same idea, looking at the a's between 1 and $n-1$ that are relatively prime to n (and

^p

letting $\phi(n)$ be the number of them), gives

If $(a, n) = 1$, then $a^{\phi(n)} \equiv 1$. \overline{n} . The 1 state \overline{n} is the

If the prime factorization of n is $p_1^{\cdots} \cdots p_k^{\cdots}$, then $\phi(n)=[p_1^{\cdots} (p_1-1)] \cdots [p_k^{\cdots} (p_k-1)]$

The integers \mathbb{Z} , the integers mod n \mathbb{Z}_n , the real numbers \mathbb{R} , the complex numbers \mathbb{C} are all rings.

A homomorphism is a function $\varphi : R \to S$ from a ring R to a ring S satisfying:

for any $r, r' \in R$, $\varphi(r + r') = \varphi(r) + \varphi(r')$ and $\varphi(r \cdot r') = \varphi(r) \cdot \varphi(r')$.

The basic idea is that it is a function that "behaves well" with respect to addition and multiplication.

An *isomorphism* is a homomorphism that is both one-to-one and onto. If there is an isomorphism from R to S, we say that R and S are *isomorphic*, and write $R \cong S$.

Example: if $(m, n) = 1$, then $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$. The isomorphism is given by $\varphi([x]_{mn}) = ([x]_m, [x]_n)$

The main ingredients in the proof:

If $\varphi: R \to S$ and $\psi: R \to T$ are ring homomorphisms, then the function $\omega: R \to S \times T$ given by $\omega(r)=(\varphi(r), \psi(r))$ is also a homomorphism.

If $m|n$, then the function $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ given by $\varphi([x]_n)=[x]_m$ is a homomorphism.

Together, these give that the function we want above is a homomorphism. The fact that $(m, n) = 1$ implies that φ is one-to-one; then the Pigeonhole Principle implies that it is also onto!

The above isomorphism and induction imply that if $n_1,\ldots n_k$ are pairwise relatively prime (i.e., if $i \neq j$ then $(n_i, n_j) = 1$), then

 $\mathbb{Z}_{n_1\cdots n_k}\cong \mathbb{Z}_{n_1}\times\cdots\times \mathbb{Z}_{n_k}$. This implies:

The Chinese Remainder Theorem: If n_1, \ldots, n_k are pairwise relatively prime, then for any $a_1,\ldots a_k \in \mathbb{N}$ the system of equations

 $x \equiv a_i \pmod{n_i}, i = 1,\dots k$

has a solution, and any two solutions are congruent modulo $n_1 \cdots n_k$.

A solution can be found by (inductively) replacing a pair of equations $x \equiv a \pmod{n}$, $x \equiv b \pmod{m}$, with a single equation $x \equiv c \pmod{nm}$, by solving the equation $a + nk = x = b + mj$ for k and j, using the Euclidean Algorithm.