Math 445 Homework 5

Due Friday, October 18

20. Find the continued fraction expansions of the rational numbers

23/38 and 112/55

21. Show that if $a, b \in \mathbb{Z}$, $b \ge 1$, and (a, b) = 1, then the continued fraction expansion of a/b has length at most b.

Hint: this is really a question about the Euclidean algorithm....

- 22. Find the continued fraction expansion of $\sqrt{15}$, and use this to find the first six (6) convergents of $\sqrt{15}$.
- 23. Repeat problem # 22, for $\sqrt{23}$.
- 24. Show that for n a positive integer that is not a perfect square (translation: the continued fraction expansion of \sqrt{n} never terminates), that at every stage of the continued fraction expansion of $x = \sqrt{n}$

$$x = \langle a_0, a_1, \dots, a_{k-1}, a_k + x_k \rangle$$

 x_k is always of the form $x_k = \frac{\sqrt{n-a}}{b}$, where $b|n-a^2$. Conclude that the continued fraction expansion of \sqrt{n} will eventually repeat, with a period of length at most $n|\sqrt{n}|$.

Hint: by induction! In the inductive step, write $\frac{b}{\sqrt{n}-a} = \frac{\sqrt{n}+a}{c}$, and then find the fractional part of this. For the second half, how long must you wait before the x_k 's must repeat themselves?