Math 445 Number Theory

Topics for the first exam

An integer p is prime if whenever p = ab with $a, b \in \mathbb{Z}$, either $a = \pm p$ or $b = \pm p$.

[For sanity's sake, we will take the position that primes should <u>also</u> be ≥ 2 .]

Primality Tests.

How do you decide if a number n is prime?

- Brute force: try to divide every number (better: prime) $\leq n$ (better $\leq \sqrt{n}$) into n, to locate a factor.
- Fermat's Little Theorem. If p is prime and (a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.
- A composite number n for which $a^{n-1} \equiv 1 \pmod{n}$ is called a *pseudoprime to the base a*. A composite number which is a pseudoprime to every base a satisfying (a, n) = 1 is called a *Carmichael number*.
- $\phi(n) =$ number of integers *a* between 1 and *n* with (a, n) = 1; if $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ is the prime factorization of *n*, then $\phi(n) = p_1^{\alpha_1 1}(p_1 1) \cdots p_k^{\alpha_k 1}(p_k 1)$
- Euler's Theorem. If (a, n) = 1, then $a^{\phi(n)} \pmod{n}$.
- Wilson's Theorem. p is prime $\Leftrightarrow (p-1)! \equiv -1 \pmod{p}$
- Fermat \Rightarrow if (a, n) = 1 and $a^{n-1} \not\equiv 1 \pmod{n}$ then n is **not** prime.
- If p is prime and $a^2 \equiv 1 \pmod{p}$, then $a \equiv \pm 1 \pmod{p}$
- (Miller-Rabin Test.) Given n, set $n 1 = 2^k d$ with d odd. Then if n is prime and (a, n) = 1, either $a^d \equiv 1 \pmod{n}$ or $a^{2^i d} \equiv -1 \pmod{n}$ for some i < k.
- If n is not prime, but the above still holds for some a, then n is called a strong pseudoprime to the base a.
- Compositeness test: If $a^d \not\equiv \pm 1 \pmod{n}$, compute $a^{2^i d} \pmod{n}$ for $i = 1, 2, \ldots$. If this sequence hits 1 **before** hitting -1, or is not 1 for i = k, then n is **not** prime.
- Fact: If n is composite, then it is a strong pseudoprime for at most 1/4 th of the a's between 1 and n.

Finding Factors.

- (Pollard Rho Test.) Idea: if p is a factor of N, then for any two randomly chosen numbers a abd b, p is more likely to divide b a than N is.
- Procedure: given N, use Miller-Rabin to make sure it is composite! Then pick a fairly random starting value $a_1 = a$, and a fairly random polynomial with integer coefficients f(x) (such as $f(x) = x^2 + b$), then compute $a_2 = f(a_1), \ldots, a_n = f(a_{n-1}), \ldots$. Finally, compute $(a_{2n} - a_n, N)$ for each n. If this is > 1 and < N, stop: you have found a proper factor of N. If it gives you N, stop: the test has failed. You should restart with a different a and/or f.
- Basic idea: this will typically find a factor on a timescale on the order of $\sqrt{p} \leq N^{1/4}$, where p is the smallest (but unknown!) prime factor of N.

Periods of repeating fractions.

- For integers n with (10, n) = 1, the fractions a/n have a repeating decimal expansion. E.g., $2/3 = .6666 \dots, 1/7 = .142857142857 \dots$, etc.
- Determining the length of the *period* (repeating part) can be done via FLT: 1/7 = .142857142857...means $1/7 = 142857/10^6 + 142857/10^{12} + ... = 142857/(10^6 - 1)$, i.e. $7|10^6 - 1$, and 6 is the smallest power for which this is true.
- In general (if (a, n) = 1), we define $ord_n(a) = k =$ the smallest positive number with $a^k \equiv 1 \pmod{n}$. Equivalently, it is the largest number satisfying $a^r \equiv 1 \pmod{n} \Rightarrow ord_n(a)|r$. (Therefore, $ord_n(a)|\phi(n)$, by Euler's Theorem.)
- Generally, then, the period of $1/n = ord_n(10)$, when (10, n) = 1. When (10, n) > 1, we can write $n = 2^r 5^s b = ab$ with (10, b) = 1, and then write
- $\frac{1}{n} = \frac{1}{ab} = \frac{A}{a} + \frac{B}{b}$ for some integers A,B .
- A/a will have a terminating decimal expansion, so 1/n will have some garbage at the beginning , and then repeat with period equal to the period of b.
- Gauss conjectured that there are infinitely many primes p whose period is p-1; this is still unproved.

Primality tests for special cases.

- (Lucas' Theorem.) If for, each prime p with p|n-1, there is an a with $a^{n-1} \equiv 1 \pmod{n}$ but $a^{(n-1)/p} \not\equiv 1 \pmod{n}$, then n is prime.
- Application: look at $N = 2^k + 1$. This *could* be prime only if $k = 2^n$; otherwise $k = 2^n d$, d odd, and then $2^{2^n} + 1|(2^{2^n})^d + 1 = N$. The numbers $F_n = 2^{2^n} + 1$ are called *Fermat* numbers; the ones which are prime are called *Fermat primes*. The only known Fermat primes correspond to n = 0, 1, 2, 3, 4; Euler showed that $641|F_5$, and F_n is known to be composite for $n = 5, \ldots, 28$. By Lucas' Thm, F_n is prime \Leftrightarrow there is an a with
- $a^{F_n-1} \equiv 1 \pmod{F_n}$, but $a^{(F_n-1)/2} \not\equiv 1 \pmod{F_n}$ (which really together means $a^{(F_n-1)/2} \equiv -1 \pmod{F_n}$

Pepin showed that it if some a will work, then a = 3 will work!

Fermat primes are important in Euclidean geometry; Gauss showed that a regular N-sided polygon can be constructed with compass and straight-edge $\Leftrightarrow N$ is a power of 2 times a product of *distinct* Fermat primes.

Primitive roots.

A number a is called a *primitive root of 1 mod n* if $ord_n(a) = \phi(n)$ (the largest it could be).

Strong converse to Lucas' Thm: If n is prime, then there is a primitive root of 1 mod n (i.e., there is *one* a that will work for every prime p in Lucas' Thm).

The proof uses the important

(Lagrange's Theorem.) If p is a prime, and $f(x) = a_n x^n + \cdots + a_1 x + a_0$ is a polynomial with integer coefficients, $a_n \not\equiv 0 \pmod{p}$, then the equation

$$f(x) \equiv 0 \pmod{p}$$

has at most n solutions.

This implies that if p is prime and d|p-1, then the equation $x^d \equiv 1 \pmod{p}$ has exactly d solutions.

Lemma: If $ord_n(a) = m$, then $ord_n(a^k) = m/(m,k)$

Corollary: If p is prime, then there are exactly $\phi(p-1)$ (incongruent mod p) primitive roots of 1 mod p: find one, a, then the rest are a^k for $1 \le k \le p$ and (k, p-1) = 1.

Fact: There is a primitive root mod n only for $n = 2, 3, p^k, 2p^k$ for p a prime.

Artin has conjectured that if a is not a square or -1, then a is a primitive root of 1 for infinitely many primes p. (This is a generalization of Gauss' conjecture above.)

n^{th} roots modulo a prime:.

If p is prime and (a, p) = 1, then (setting r = (n, p - 1) the equation $x^n \equiv a \pmod{p}$ has r solutions if $a^{(p-1)/r} \equiv 1 \pmod{p}$ no solution if $a^{(p-1)/r} \not\equiv 1 \pmod{p}$

This result does not really require p to be prime, only that there be a primitive root mod p. The exact statement is:

If there is primitive root of 1 mod N and (a, N) = 1, then (setting $r = (n, \phi(N))$) the equation $x^n \equiv a \pmod{N}$ has

r solutions if $a^{\phi(N)/r} \equiv 1 \pmod{N}$ no solution if $a^{\phi(N)/r} \not\equiv 1 \pmod{N}$

Some consequences:

(Euler's Criterion.) The equation $x^2 \equiv a \pmod{p}$ has a solution $(p = \text{odd prime}) \Leftrightarrow a^{(p-1)/2} \equiv 1 \pmod{p}$; it then has two solutions (x and -x).

The equation $x^2 \equiv -1 \pmod{p}$ has a solution $\Leftrightarrow (-1)^{(p-1)/2} \equiv 1 \pmod{p} \Leftrightarrow p = 2$ or $p \equiv 1 \pmod{4}$

For f(x) = a polynomial with integer coefficients, let S(n) = the number of (incongruent, mod n) solutions to the congruence equation $f(x) \equiv 0 \pmod{n}$. Then:

If (M, N) = 1, then $S(MN) = S(M) \times S(N)$. So: to decide if a congruence equation has a solution (and how many), it suffices to decide this for the prime power factors of the modulus.

Sums of squares.

If $n = a^2 + b^2$, then $n \equiv 0, 1$, or $2 \pmod{4}$. Since the product of the sum of two squares $(a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2 = (ad + bc)^2 + (ac - bd)^2$ is the sum of two squares, and

 $2n = (a^2 + b^2) \Rightarrow n = (\frac{a-b}{2})^2 + (\frac{a+b}{2})^2$ and $m = (a^2 + b^2) \Rightarrow 2m = (a-b)^2 + (a+b)^2$ it suffices to focus on odd numbers, and (more or less) odd primes.

If $p \equiv 1 \pmod{4}$ is prime, then p is the sum of two squares.

If $p \equiv 1 \pmod{4}$ is prime, then p is the sum of two squares

If $p \equiv 3 \pmod{4}$ is prime and $p|a^2 + b^2$, then p|a and p|b.

Together, these imply that a positive integer n can be expressed as the sum of two squares \Leftrightarrow in the prime factorization of n, every prime congruent to 3 mod 4 appears with even (possibly 0) exponent.

If n can be expressed as a sum of two squares in two different ways, $n = a^2 + b^2 = c^2 + d^2$, then $n = (x^2 + y^2)(z^2 + w^2)$ is the product of two sums of squares, with $x, y, z, w \ge 1$.