Math 445 Number Theory

Topics for the first exam

An integer p is prime if whenever $p = ab$ with $a, b \in \mathbb{Z}$, either $a = \pm p$ or $b = \pm p$.

[For sanity's sake, we will take the position that primes should also be ≥ 2 .]

Primality Tests.

How do you decide if a number n is prime?

- Brute force: try to divide every number (better: prime) $\leq n$ (better $\leq \sqrt{n}$) into n, to locate a factor.
- Fermat's Little Theorem. If p is prime and $(a, p) = 1$, then $a^{p-1} \equiv 1 \pmod{p}$.
- A composite number n for which $a^{n-1} \equiv 1 \pmod{n}$ is called a *pseudoprime to the base a.* A composite number which is a pseudoprime to every base a satisfying $(a, n)=1$ is called a
- $\phi(n) =$ number of integers a between 1 and n with $(a,n) = 1;$ if $n = p_1^{-1} \cdots p_k^{-k}$ is the prime factorization of n, then $\phi(n) = p_1^{n_1-1}(p_1-1)\cdots p_k^{n_k-1}(p_k-1)$
- Euler's Theorem. If $(a, n) = 1$, then $a^{\phi(n)} \pmod{n}$.

Wilson's Theorem. p is prime \Leftrightarrow $(p-1)! \equiv -1 \pmod{p}$

Fermat \Rightarrow if $(a, n) = 1$ and $a^{n-1} \not\equiv 1 \pmod{n}$ then n is **not** prime.

If p is prime and $a^2 \equiv 1 \pmod{p}$, then $a \equiv \pm 1 \pmod{p}$

- (Miller-Rabin Test.) Given n, set $n-1=2^k d$ with d odd. Then if n is prime and $(a, n) = 1$, either $a^d \equiv 1 \pmod{n}$ or $a^{2^i d} \equiv -1 \pmod{n}$ for some $i < k$.
- If n is not prime, but the above still holds for some a, then n is called a *strong pseudoprime*
- Compositeness test: If $a^a \not\equiv \pm 1 \pmod{n}$, compute $a^{2a} \pmod{n}$ for $i = 1, 2, \ldots$. If this sequence hits 1 before hitting -1 , or is not 1 for $i = k$, then n is not prime.
- Fact: If n is composite, then it is a strong pseudoprime for at most $1/4$ th of the a's between 1 and n .

Finding Factors.

- (Pollard Rho Test.) Idea: if p is a factor of N, then for any two randomly chosen numbers a abd b, p is more likely to divide $b - a$ than N is.
- Procedure: given N, use Miller-Rabin to make sure it is composite! Then pick a fairly random starting value $a_1 = a$, and a fairly random polynomial with integer coefficients $f(x)$ (such as $\overline{f}(x) = x^2 + b$), then compute $a_2 = f(a_1), \ldots, a_n = f(a_{n-1}), \ldots$. Finally, compute $(a_{2n} - a_n, N)$ for each n. If this is > 1 and $< N$, stop: you have found a proper factor of N. If it gives you N , stop: the test has failed. You should restart with a different a and/or f .
- Basic idea: this will typically find a factor on a timescale on the order of $\sqrt{p} \le N^{1/4}$, where p is the smallest (but unknown!) prime factor of N .

Periods of repeating fractions.

- For integers n with $(10, n) = 1$, the fractions a/n have a repeating decimal expansion. E.g, $2/3 = .6666 \ldots$, $1/7 = .142857142857 \ldots$, etc.
- Determining the length of the *period* (repeating part) can be done via FLT: $1/7 = .142857142857...$ means $1/7 = 142857/10^6 + 142857/10^{12} + \ldots = 142857/(10^6 - 1)$, i.e $7/10^6 - 1$, and 6 is the smallest power for which this is true.
- In general (if $(a, n) = 1$), we define $\text{ord}_n(a) = k$ = the smallest positive number with $a^k \equiv 1 \pmod{n}$. Equivalently, it is the largest number satisfying $a^r \equiv 1 \pmod{n} \Rightarrow$ ord_n(a)|r. (Therefore, ord_n(a)| $\phi(n)$, by Euler's Theorem.)
- Generally, then, the period of $1/n = \alpha r d_n(10)$, when $(10, n) = 1$. When $(10, n) > 1$, we can write $n = 2^r 5^s b = ab$ with $(10, b) = 1$, and then write
- $n = ab = a = b$ $ab \qquad a \qquad b \qquad \qquad$ $+$ + $\overline{}$ and $\overline{}$ for some integers A; B .
- A/a will have a terminating decimal expansion, so $1/n$ will have some garbage at the beginning , and then repeat with period equal to the period of b.
- Gauss conjectured that there are infinitely many primes p whose period is $p-1$; this is still unproved.

Primality tests for special cases.

- (Lucas' Theorem.) If for, each prime p with $p|n-1$, there is an a with $a^{n-1} \equiv 1 \pmod{n}$ but $a^{(n-1)/p} \not\equiv 1 \pmod{n}$, then n is prime.
- Application: look at $N \equiv 2^n + 1$. This could be prime only if $\kappa \equiv 2^n$; otherwise $\kappa \equiv 2^n a$, d odd, and then $2^2 + 1/(2^2)^a + 1 = N$. The numbers $F_n = 2^2 + 1$ are called Fermat numbers; the ones which are prime are called Fermat primes. The only known Fermat primes correspond to $n = 0, 1, 2, 3, 4$; Euler showed that $641|F_5$, and F_n is known to be composite for $n = 5, \ldots, 28$. By Lucas' Thm, F_n is prime \Leftrightarrow there is an a with
- $a^{F_n-1} \equiv 1 \pmod{F_n}$, but $a^{(F_n-1)/2} \not\equiv 1 \pmod{F_n}$ (which really together means $a^{(F_n-1)/2} \equiv$ $-1 \pmod{F_n}$

Pepin showed that it if some a will work, then $a = 3$ will work!

Fermat primes are important in Euclidean geometry; Gauss showed that a regular N-sided polygon can be constructed with compass and straight-edge \Leftrightarrow N is a power of 2 times a product of distinct Fermat primes.

A number a is called a *primitive root of 1 mod n* if $\text{or} d_n(a) = \phi(n)$ (the largest it could be).

Strong converse to Lucas' Thm: If n is prime, then there is a primitive root of 1 mod n (i.e., there is one a that will work for every prime p in Lucas' Thm.

The proof uses the important

(Lagrange's Theorem.) If p is a prime, and $f(x) = a_n x^n + \cdots + a_1 x + a_0$ is a polynomial with integer coefficients, $a_n \neq 0 \pmod{p}$, then the equation

$$
f(x) \equiv 0 \text{(mod } p)
$$

has at most *n* solutions.

This implies that if p is prime and $d|p-1$, then the equation $x^d \equiv 1 \pmod{p}$ has exactly d solutions.

Lemma: If $\sigma r a_n(a) = m$, then $\sigma r a_n(a) = m/(m, \kappa)$

Corollary: If p is prime, then there are exactly $\phi(p-1)$ (incongruent mod p) primitive roots of 1 mod p: find one, a, then the rest are a for $1 \leq k \leq p$ and $(k, p-1) = 1$.

Fact: There is a primitive root mod n only for $n = 2, 3, p^{\ast}, 2p^{\ast}$ for p a prime.

Artin has conjectured that if a is not a square or -1 , then a is a primitive root of 1 for infinitely many primes p . (This is a generalization of Gauss' conjecture above.)

 n - roots modulo a prime:.

If p is prime and $(a, p) = 1$, then (setting $r = (n, p - 1)$ the equation $x^n \equiv a \pmod{p}$ has r solutions if $a^{(p-1)/r} \equiv 1 \pmod{p}$ no solution if $a^{(p-1)/r} \not\equiv 1 \pmod{p}$

This result does not really require p to be prime, only that there be a primitive root mod p. The exact statement is:

If there is primitive root of 1 mod N and $(a, N) = 1$, then (setting $r = (n, \phi(N))$) the equation $x^n \equiv a \pmod{N}$ has

r solutions if $a^{\phi(N)/r} \equiv 1 \pmod{N}$ no solution if $a^{\phi(N)/r} \not\equiv 1 \pmod{N}$

Some consequences:

(Euler's Criterion.) The equation $x^2 \equiv a \pmod{p}$ has a solution $(p = \text{odd prime}) \Leftrightarrow a^{(p-1)/2} \equiv$ $1(\text{mod } p)$; it then has two solutions $(x \text{ and } -x)$.

The equation $x^2 \equiv -1 \pmod{p}$ has a solution $\Leftrightarrow (-1)^{(p-1)/2} \equiv 1 \pmod{p} \Leftrightarrow p = 2$ or $p \equiv 1 \pmod{4}$

For $f(x) = a$ polynomial with integer coefficients, let $S(n) =$ the number of (incongruent, mod n) solutions to the congruence equation $f(x) \equiv 0 \pmod{n}$. Then:

If (M;N) = 1, then S(MN) = S(M) - S(N). So: to decide if a congruence equation has a solution (and how many), it suffices to decide this for the prime power factors of the modulus.

sums of squares. Sums of some state of the square state of the square state of the square state of the square s

If $n = a + b$, then $n = 0, 1, 0$ z(mod 4). Since the product of the sum of two squares $(a^{2} + b^{2}) (c^{2} + a^{2}) = (ac + ba)^{2} + (aa - bc)^{2} = (aa + bc)^{2} + (ac - ba)^{2}$ is the sum of two squares, and

 $2n = (a^2 + b^2) \Rightarrow n = (\overline{a^2 + b^2})^2 + (\overline{a^2 + b^2})^2$ and $m = (a^2 + b^2) \Rightarrow 2m = (a - b)^2 + (a + b)^2$

it suces to focus on odd numbers, and (more or less) odd primes. If $p \equiv 1 \pmod{4}$ is prime, then p is the sum of two squares.

If $p \equiv 3 \pmod{4}$ is prime and $p/a^- + b^-$, then p/a and p/b .

Together, these imply that a positive integer n can be expressed as the sum of two squares \Leftrightarrow in the prime factorization of n, every prime congruent to 3 mod 4 appears with even (possibly 0) exponent.

If n can be expressed as a sum of two squares in two different ways, $n = a^- + b^- = c^- + a^-,$ then $n = (x^2 + y^2)(z^2 + w^2)$ is the product of two sums of squares, with $x, y, z, w \ge 1$.